前提:已証自伴算子至少有一個特徵值
正交
1)def求証特徵值是向量的正交補(綫性空間、封閉空間)
命题理解:
设是希尔伯特空间
上的自伴算子,
是 T 的特征值,
对应的特征向量空间为。
要证明是
的闭线性子空间,
且 也是闭线性子空间。
证明
是闭线性子空间:
线性子空间证明:
设,则
,
。
对于任意标量 ,
,
所以,
是线性子空间。
闭性证明:
设 是
中的序列,且
(在
的范数下收敛)。
因为是连续的(自伴算子有界从而连续),
。
又因为,所以
,
即,所以
,
是闭的。
证明
是闭线性子空间:
线性子空间证明:
设 ,则对于任意
,
且
。
对于任意标量