積分方程與簡單的泛函分析5.特徵值數列和特徵向量列的構造

前提:已証自伴算子至少有一個特徵值

正交

1)def求証特徵值是向量的正交補(綫性空間、封閉空間)
命题理解:

T是希尔伯特空间H上的自伴算子,\lambda是 T 的特征值,

对应的特征向量空间为E_{\lambda}=\{x\in H:Tx = \lambda x\}

要证明E_{\lambda}H 的闭线性子空间,

E_{\lambda}^{\perp}=\{y\in H:(x,y)=0,\forall x\in E_{\lambda}\} 也是闭线性子空间。

证明E_{\lambda}是闭线性子空间:
线性子空间证明:

x_1,x_2\in E_{\lambda},则Tx_1=\lambda x_1Tx_2=\lambda x_2

对于任意标量 \alpha,\beta

T(\alpha x_1+\beta x_2)=\alpha Tx_1+\beta Tx_2=\alpha\lambda x_1+\beta\lambda x_2=\lambda(\alpha x_1+\beta x_2)

所以\alpha x_1+\beta x_2\in E_{\lambda}E_{\lambda} 是线性子空间。

闭性证明:

\{x_n\}E_{\lambda}中的序列,且x_n\rightarrow x(在H的范数下收敛)。

因为T是连续的(自伴算子有界从而连续),\lim_{n\rightarrow\infty}Tx_n = Tx

又因为Tx_n=\lambda x_n,所以 \lim_{n\rightarrow\infty}\lambda x_n=\lambda x

Tx=\lambda x,所以x\in E_{\lambda}E_{\lambda}是闭的。

证明 E_{\lambda}^{\perp}是闭线性子空间:
线性子空间证明:

y_1,y_2\in E_{\lambda}^{\perp},则对于任意x\in E_{\lambda}(x,y_1) = 0(x,y_2)=0

对于任意标量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老了,不知天命

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值