第9章 非線性泛函分析的偉大定理
1.非線性泛函分析的 “偉大定理”
非线性泛函分析旨在研究非线性算子和泛函在函数空间中的性质与行为,其中包含一系列深刻且具有广泛应用的定理。这些定理为解决各种非线性问题提供了强大的理论框架,涉及到从偏微分方程的求解、变分问题的分析到优化理论等多个领域。以下将详细介绍其中一些重要定理及其相关应用。
2.非線性偏微分方程作為變分問題的歐拉 - 拉格朗日方程
变分问题与欧拉 - 拉格朗日方程的关系
- 变分问题:考虑一个泛函 J: V \to \mathbb{R},其中 V 是某个函数空间,例如索伯列夫空间 W^{1,p}(\Omega)。泛函 J 通常定义为 J(u)=\int_{\Omega}F(x, u, \nabla u)dx,其中 F:\Omega\times\mathbb{R}\times\mathbb{R}^n\to\mathbb{R} 是给定的函数,\Omega 是 \mathbb{R}^n 中的开区域。变分问题就是寻找 u \in V 使得 J(u) 达到极值。
- 欧拉 - 拉格朗日方程:如果 u 是泛函 J 的极值点,并且 F 关于其变量足够光滑,那么 u 满足欧拉 - 拉格朗日方程 \frac{\partial F}{\partial u}-\text{div}(\frac{\partial F}{\partial \nabla u}) = 0 在 \Omega 内成立。这个方程是通过对泛函 J 在 u 处进行变分得到的,即对 J(u + \epsilon\varphi) 关于 \epsilon 在 \epsilon = 0 处求导,其中 \varphi 是 V 中的任意函数,且在 \Omega 的边界上为 0(对于适当的边界条件)。通过分部积分等运算,可以得到上述欧拉 - 拉格朗日方程。
例子
- 考虑狄利克雷能量泛函 J(u)=\frac{1}{2}\int_{\Omega}|\nabla u|^2dx,其中 F(x, u, \nabla u)=\frac{1}{2}|\nabla u|^2。计算 \frac{\partial F}{\partial u}=0,\frac{\partial F}{\partial \nabla u}=\nabla u,则欧拉 - 拉格朗日方程为 -\Delta u = 0,这就是拉普拉斯方程。在适当的边界条件下,求解狄利克雷能量例如在狄利克雷边界条件 u|_{\partial\Omega}=g 下,寻找使 J(u) 最小的函数 u 等价于求解这个拉普拉斯方程的边值问题。这表明许多重要的线性和非线性偏微分方程都可以通过变分原理来推导,将偏微分方程的求解转化为泛函的极值问题,为求解提供了新的思路和方法。
- 应用:在物理学中,许多物理现象可以用变分原理来描述。例如,弹性力学中的最小势能原理,弹性体的平衡状态对应于总势能泛函的最小值,而其欧拉 - 拉格朗日方程则描述了弹性体的应力 - 应变关系和平衡方程。在电磁学中,某些静电场和静磁场问题也可以通过变分方法建立相应的泛函,并得到描述场分布的偏微分方程。
3.凸函數和下半連續函數的最小值的存在性
- 凸函数的性质与最小值存在性
- 定义:设 V 是赋范向量空间,C\subseteq V 是凸集,函数 f:C\to\mathbb{R} 称为凸函数,如果对于任意 x_1,x_2\in C 和 \lambda\in[0,1],有 f(\lambda x_1+(1 - \lambda)x_2)\leq\lambda f(x_1)+(1 - \lambda)f(x_2)。
- 最小值存在性定理:如果 C 是赋范向量空间 V 中的非空、闭且凸的子集,f:C\to\mathbb{R} 是凸函数且下方有界,即存在 M\in\mathbb{R} 使得 f(x)\geq M 对所有 x\in C 成立,那么 f 在 C 上存在最小值。证明思路通常基于构造极小化序列 \{x_n\}\subseteq C,使得 \lim_{n\to\infty}f(x_n)=\inf_{x\in C}f(x),然后利用 C 的闭性和凸性以及 f 的凸性证明该序列收敛到 C 中的一点 x_0,且 f(x_0)=\min_{x\in C}f(x)。
- 下半连续函数的性质与最小值存在性
- 定义:函数 f:V\to\mathbb{R}\cup\{+\infty\} 称为下半连续的,如果对于任意 x\in V 和任意序列 \{x_n\}\subseteq V 满足 x_n\to x,有 \liminf_{n\to\infty}f(x_n)\geq f(x)。
- 最小值存在性定理:如果 V 是自反的巴拿赫空间,C\subseteq V 是弱闭且非空的子集,f:C\to\mathbb{R}\cup\{+\infty\} 是下半连续且强制的(即当 \|x\|\to\infty 时,f(x)\to+\infty),那么 f 在 C 上存在最小值。证明过程利用自反巴拿赫空间的弱紧性,通过选取弱收敛子序列并结合下半连续性和强制性来证明最小值的存在。
- 应用:在优化问题中,许多目标函数是凸函数或下半连续函数。例如,在机器学习的正则化问题中,经常使用的 L_1 和 L_2 正则化项分别对应凸函数,通过分析这些函数的性质可以确定最优解的存在性。在变分法中,对于一些复杂的泛函,判断其是否为凸函数或下半连续函数有助于确定相应变分问题解的存在性。
4.沃爾泰拉積分方程的解的存在性
- 沃爾泰拉積分方程的形式:沃尔泰拉积分方程有多种形式,常见的第二类沃尔泰拉积分方程为 u(x)=f(x)+\lambda\int_{a}^{x}K(x,t)u(t)dt,其中 a\leq x\leq b,f(x) 是已知函数,K(x,t) 是积分核,\lambda 是参数。
- 解的存在性定理:如果 f\in C([a,b])([a,b] 上的连续函数空间),K\in C(\{(x,t):a\leq t\leq x\leq b\}),那么对于任意 \lambda\in\mathbb{R},上述沃尔泰拉积分方程在 C([a,b]) 中存在唯一解。证明方法通常采用逐次逼近法,构造迭代序列 u_{n + 1}(x)=f(x)+\lambda\int_{a}^{x}K(x,t)u_n(t)dt,u_0(x)=f(x)。通过证明该序列在 C([a,b]) 中一致收敛,且极限函数就是积分方程的解来完成证明。
- 应用:在许多物理和工程问题中会出现沃尔泰拉积分方程。例如,在热传导问题中,当考虑非均匀介质中热传递的记忆效应时,温度分布可能满足沃尔泰拉积分方程。在控制系统中,一些描述系统输入 - 输出关系的模型也可以用沃尔泰拉积分方程表示,通过求解该方程可以分析系统的动态行为。
5.索伯列夫空間 W^{1,p}(\Omega) 中的最小值的存在性
- 索伯列夫空间 W^{1,p}(\Omega) 的性质:索伯列夫空间 W^{1,p}(\Omega) 由在 \Omega 上具有一阶弱导数且 u 及其弱导数 D u 都属于 L^p(\Omega) 的函数 u 组成,其范数 \|u\|_{W^{1,p}(\Omega)}=\left(\int_{\Omega}|u|^pdx+\int_{\Omega}|\nabla u|^pdx\right)^{\frac{1}{p}}(1\leq p\lt\infty)。W^{1,p}(\Omega) 是一个巴拿赫空间,当 1\lt p\lt\infty 时,它还是自反的。
- 最小值存在性定理:设 F:\Omega\times\mathbb{R}\times\mathbb{R}^n\to\mathbb{R} 满足一定的增长条件(例如,存在常数 a,b\geq0 和 1\lt q\leq p 使得 |F(x,z,\xi)|\leq a + b(|z|^q+|\xi|^p) 对几乎处处的 x\in\Omega 和所有 z\in\mathbb{R},\xi\in\mathbb{R}^n 成立),并且 F 关于 z 和 \xi 是凸的。考虑泛函 J(u)=\int_{\Omega}F(x, u, \nabla u)dx 在 W^{1,p}_0(\Omega)(W^{1,p}(\Omega) 中在 \partial\Omega 上迹为 0 的函数子空间)上,那么 J 在 W^{1,p}_0(\Omega) 上存在最小值。证明利用了 W^{1,p}(\Omega) 的自反性(当 1\lt p\lt\infty)、凸函数的性质以及增长条件来构造极小化序列并证明其收敛到 W^{1,p}_0(\Omega) 中的一点,该点即为泛函的最小值点。
- 应用:在偏微分方程的变分方法中,许多问题可以归结为在索伯列夫空间中寻找泛函的最小值。例如,对于一些椭圆型偏微分方程,通过构造相应的能量泛函并证明其在索伯列夫空间中的最小值存在性,可以得到方程弱解的存在性。在图像处理中,一些基于变分原理的去噪和分割算法也利用了索伯列夫空间中泛函最小值的存在性理论,通过定义合适的能量泛函来恢复图像的真实信息。
6.應用於 p - 拉普拉斯算子
- p - 拉普拉斯算子的定义:p - 拉普拉斯算子 \Delta_p u=\text{div}(|\nabla u|^{p - 2}\nabla u),1\lt p\lt\infty。当 p = 2 时,它就是经典的拉普拉斯算子 \Delta。与 p - 拉普拉斯算子相关的方程 -\Delta_p u = f 在 \Omega 内,u = 0 在 \partial\Omega 上(狄利克雷边界条件)可以看作是变分问题的欧拉 - 拉格朗日方程。对应的泛函为 J(u)=\frac{1}{p}\int_{\Omega}|\nabla u|^pdx-\int_{\Omega}fudx。
- 解的存在性:利用索伯列夫空间 W^{1,p}_0(\Omega) 中泛函最小值的存在性理论,可以证明上述 p - 拉普拉斯方程在 W^{1,p}_0(\Omega) 中存在弱解。因为泛函 J(u) 中的第一项 \frac{1}{p}\int_{\Omega}|\nabla u|^pdx 关于 \nabla u 是凸的,且满足适当的增长条件,第二项 -\int_{\Omega}fudx 是线性的,整体满足索伯列夫空间中泛函最小值存在的条件。
- 应用:p - 拉普拉斯方程在许多领域有应用,如非线性弹性理论、渗流理论等。在非线性弹性理论中,它可以描述一些具有非线性应力 - 应变关系的材料的行为;在渗流理论中,用于模拟非牛顿流体在多孔介质中的流动,通过研究 p - 拉普拉斯方程的解的性质,可以深入理解这些物理过程。
7.多凸性;補償緊性;約翰・鮑爾的存在性定理
- 多凸性的概念:设 F:\mathbb{R}^{n\times n}\to\mathbb{R},如果 F 可以表示为 F(A)=G(A,\text{adj}(A),\det(A)),其中 G:\mathbb{R}^{n\times n}\times\mathbb{R}^{n\times n}\times\mathbb{R}\to\mathbb{R} 是关于其变量的凸函数,\text{adj}(A) 是 A 的伴随矩阵,\det(A) 是 A 的行列式,则称 F 是多凸函数。多凸性是比凸性更弱的一种性质,但在处理一些非线性弹性问题中具有重要作用。
- 补偿紧性:补偿紧性理论是一种用于处理非线性偏微分方程解的存在性的方法。在一些情况下,虽然非线性项不满足通常的紧性条件,但通过对不同项之间的相互作用进行分析,可以得到某种“补偿”的紧性。例如,在一些涉及梯度项的非线性问题中,通过研究梯度的弱收敛性以及其他相关量的性质,利用补偿紧性原理可以证明解的存在性。
- 约翰·鲍尔的存在性定理:在非线性弹性中,约翰·鲍尔证明了对于某些多凸储能函数 W:\mathbb{R}^{3\times 3}\to\mathbb{R},形如 \min_{y\in W^{1,p}(\Omega;\mathbb{R}^3)}\int_{\Omega}W(\nabla y)dx(p\gt1)的变分问题存在解,其中 \Omega 是 \mathbb{R}^3 中的有界开区域。该定理利用了多凸性和补偿紧性的思想,通过对储能函数的多凸性结构进行分析,结合索伯列夫空间的性质以及补偿紧性原理来证明解的存在性。这个定理为非线性弹性理论提供了重要的理论基础,使得我们能够从变分的角度研究弹性体的大变形问题。
8.埃克蘭德變分原理;函數的最小值的存在性
- 埃克蘭德变分原理:设 (X,d) 是完备的度量空间,f:X\to\mathbb{R}\cup\{+\infty\} 是下半连续且下方有界的函数。对于任意 \epsilon\gt0,存在 x_{\epsilon}\in X 使得 f(x_{\epsilon})\leq\inf_{x\in X}f(x)+\epsilon 且对于任意 y\neq x_{\epsilon},有 f(x_{\epsilon})\lt f(y)+\epsilon d(x_{\epsilon},y)。
- 证明思路:通过构造一个迭代序列来证明。从任意一点 x_0\in X 出发,定义 x_{n + 1} 满足 f(x_{n + 1})\leq\inf_{x\in X}\left\{f(x)+\frac{\epsilon}{2^n}d(x,x_n)\right\}。利用 X 的完备性和 f 的下半连续性,可以证明该序列收敛到满足埃克蘭德变分原理条件的 x_{\epsilon}。
- 函数最小值存在性的应用:虽然埃克蘭德变分原理本身并不直接给出函数的最小值,但它提供了一种逼近最小值的方法。在一些情况下,当难以直接证明函数存在最小值时,可以利用埃克蘭德变分原理构造一个近似极小化序列,然后通过进一步分析该序列的性质来证明最小值的存在。例如,在一些非凸函数的优化问题中,埃克蘭德变分原理可以帮助我们找到一个几乎达到最小值的点,然后通过研究该点附近的函数性质来探讨最小值的存在性。在变分法中,对于一些复杂的泛函,当传统的凸性等条件不满足时,埃克蘭德变分原理为研究泛函的极值问题提供了新的途径。
9.布勞威爾不動點定理 —— 第一個證明
- 布勞威爾不动点定理内容:设 B 是 \mathbb{R}^n 中的闭单位球 \{x\in\mathbb{R}^n:\|x\|\leq1\},f:B\to B 是连续映射,则 f 在 B 中至少存在一个不动点,即存在 x_0\in B 使得 f(x_0)=x_0。
- 第一个证明思路(利用同伦和拓扑度):
- 同伦的概念:设 f,g:X\to Y 是连续映射,如果存在连续映射 H:X\times[0,1]\to Y 使得 H(x,0)=f(x) 且 H(x,1)=g(x) 对所有 x\in X 成立,则称 f 和 g 是同伦的,H 称为 f 到 g 的同伦。
- 拓扑度:对于连续映射 F:\Omega\to\mathbb{R}^n(\Omega 是 \mathbb{R}^n 中的有界开集),y\notin F(\partial\Omega),拓扑度 \text{deg}(F,\Omega,y) 是一个整数,它反映了 F 将 \Omega 围绕 y 的“圈数”。拓扑度具有一些重要性质,如同伦不变性,即如果 F 和 G 是同伦的且 y\notin F(\partial\Omega)\cup G(\partial\Omega),则 \text{deg}(F,\Omega,y)=\text{deg}(G,\Omega,y)。
- 证明过程:假设 f:B\to B 没有不动点,定义 g:B\to\partial B(\partial B 是 B 的边界,即单位球面)为 g(x)=\frac{x - f(x)}{\|x - f(x)\|}。然后构造 H:B\times[0,1]\to\partial B 为 H(x,t)=\frac{x - tf(x)}{\|x - tf(x)\|},可以证明 H 是 g 到恒等映射 I|_{\partial B} 的同伦。但是,根据拓扑度的性质,恒等映射 I|_{\partial B} 关于内部一点的拓扑度为 1,而 g 可以通过同伦变形为常值映射(例如,将 x 固定在某一点,t 从 0 变到 1 时,H(x,t) 会退化为一个点),常值映射关于内部一点的拓扑度为 0,这与同伦不变性矛盾,所以 f 一定有不动点。
- 应用:布劳威尔不动点定理在众多领域有着广泛应用。在经济学中,它可用于证明一般均衡理论中均衡点的存在性。例如,在一个包含多个生产者和消费者的市场模型里,每个经济主体的行为可以看作是一个映射,整个市场的状态空间类似于一个闭球,通过布劳威尔不动点定理能证明存在一组价格和产量,使得市场达到供需平衡,即实现一般均衡。在博弈论中,对于有限策略博弈,若将参与者的策略空间视为闭球,每个参与者根据其他参与者策略选择最优策略的映射满足连续条件时,可利用布劳威尔不动点定理证明存在纳什均衡点,即每个参与者都没有动机单方面改变策略的一种稳定状态。
應用:馮・卡門方程
- 冯·卡门方程的背景与形式:冯·卡门方程是描述薄弹性板大挠度变形的一组非线性偏微分方程。对于一个处于平面应力状态的薄弹性板,设其横向位移为 w(x,y),应力函数为 \varphi(x,y),在笛卡尔坐标系下,冯·卡门方程可表示为:
\begin{cases}
\nabla^4 \varphi = - E \left( \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} - \left(\f