第13周:DenseNet算法实战与解析

目录


前言

  • 🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客
  • 🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)

说在前面

本周学习目标:了解并研究DenseNet与ResNetV的区别(拔高:根据pytorch代码编写相应的Tensflow代码、改进思路是否可以迁移到其它地方呢?)

我的环境:Python3.8、Pycharm2020、torch1.12.1+cu113

数据来源:[K同学啊](https://mtyjkh.blog.csdn.net/)


一、DenseNet模型介绍

1.1 背景

         在计算机视觉领域,卷积神经网络(CNN)已经成为最主流的方法,从CNN的发展史来看(见第11周:ResNet-50算法实战与解析(Pytorch实现)_resnet50原文-CSDN博客)RestNet模型的出现是一个里程碑事件,ResNet可以训练出更深的CNN模型,从而实现更高的准确度。

     ResNet模型的核心是通过建立前面层与后面层之间的短路连接(shortcuts,skip connection),进而训练出更深的CNN网络;DenseNet模型基本思路和ResNet一致,但其建立的是前面所有层与后面层的密集连接,DenseNet的另一大特色是通过特征在channel上的连接来实现特征重用。对比两者来看,DenseNet在参数和计算成本更少的情境下可以实现比ResNet更优的性能。

DenseNet论文原文——Densely Connected Convolutional Networks

1.2 设计理念

        相比于ResNet,DenseNet提出了一个更激进的密集连接机制——互相连接所有的层,具体来说就是每个层都会接受其前面所有层作为其额外的输入。

       ResNet网络的残差连接机制见图1,对比图2中DenseNet的密集连接机制,可以看出ResNet是每个层与前面的某层(一般是2~4层)短路连接在一起,连接的方式是通过元素相加;但是在DenseNet中,每个层都会与前面所有层在channel维度连接(concat)在一起,是通过元素叠加,并作为下一层的输入。

       对于一个L层的网络,DenseNet共包含L(L+1)/2个连接,相比于RestNet,这是一种密集连接,而且DenseNet是直接concat来自不同层的特征图,进而可以实现特征重用,提升效率,这是两者最主要的区别。

对于标准神经网络的传播过程,输入和输出的公式是X_{l} = H_{l}(X_{l-1}),其中H_{l}是一个组合函数,通常包括BN、ReLu、Pooling、Conv操作,X_{l-1}是第l层输入的特征图,X_{l}是第l层输出的特征图

ResNet是跨层相加,输入和输出的公式是X_{l} = H_{l}(X_{l-1})+X_{l-1}

DenseNet采用的跨通道concat的形式来连接,会连接前面所有层作为输入,输入和输出的公式是X_{l} = H_{l}(X_{0},X_{1},...,X_{l-1}),要注意的是所有的层的输入都来源于前面所有层在channel维度的concat

1.3 网络结构

DenseNet详细的网络图和实现细节见下图4

    CNN网络一般要经过Pooling或者stride>1的Conv来降低特征图的大小,而DenseNet的密集连接方式需要特征图大小保持一致。为了解决这个问题,DenseNet网络中使用DenseBlock+Transition的结构其中DenseBlock是包含很多层的模块,每个层的特征图大小相同,层与层之间采用密集连接方式。而Transition层是连接两个相邻的DenseBlock,并且通过Pooling使特征图大小降低。图5给出了DenseNet的网路结构,它共包含4个DenseBlock,各个DenseBlock之间通过Transition层连接在一起。

   在DenseBlock中,各个层的特征图大小一致,可以在channel维度上连接。DenseBlock中的非线性组合函数 H(·)的是 BN+ReLU+3x3 Conv 的结构,如图6所示。另外值得注意的一点是,与ResNet不同,所有DenseBlock中各个层卷积之后均输出 k个特征图,即得到的特征图的channel数为 k,或者说采用 k 个卷积核。 k 在DenseNet称为growth rate,这是一个超参数。一般情况下使用较小的 k(比如12),就可以得到较佳的性能。假定输入层的特征图的channel数为 k_{0},那么l层输入的channel数为k_{0}+k_{1,2,...,l-1},因此随着层数增加,尽管k设定得较小,DenseBlock的输入会非常多,不过这是由于特征重用所造成的,每个层仅有 k个特征是自己独有的。

       由于后面层的输入会非常大,DenseBlock内部可以采用bottleneck层来减少计算量,主要是原有的结构中增加1x1Conv,如图7所示,即BN+ReLU+1x1Conv+BN+ReLU+3x3Conv,称为DenseNet-B结构。其中1x1 Conv得到 4k 个特征图它起到的作用是降低特征数量,从而提升计算效率。

       对于Transition层,它主要是连接两个相邻的DenseBlock,并且降低特征图大小。Transition层包括一个1x1的卷积和2x2的AvgPooling,结构为BN+ReLU+1x1Conv+2x2AvgPooling。另外,Transition层可以起到压缩模型的作用。假定Transition层的上接DenseBlock得到的特征图channels数为 m,Transition层可以产生[θ_m]:个特征(通过卷积层),其中θ∈(0,1]是压缩系数。当θ=1时,特征个数经过Transition层没有变化,即无压缩,而当压缩系数小于1时,这种结构称为DenseNet-C,文中使用 θ=0.5 。对于使用bottleneck层的DenseBlock结构和压缩系数小于1的Transition组合结构称为DenseNet-BC。

      对于lmageNet数据集,图片输入大小为 224x224,网络结构采用包含4个DenseBlock的DenseNet-BC,其首先是一个stride=2的7x7卷积层,然后是一个stride=2的3x3 MaxPooling层,后面才进入DenseBlock。lmageNet数据集所采用的网络配置如表1所示:

1.4 与其他算法效果对比

二、模型搭建实验

2.1 数据导入

这里实验的数据集仍采用的是上周鸟类识别的数据,除了模型具体结构有变化,其余都和上周的代码一致

参看ResNet50这篇文章:第11周:ResNet-50算法实战与解析(Pytorch实现)-CSDN博客

代码如下:

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from PIL import Image
import copy
import re
import torch.utils.model_zoo as model_zoo
 
 
#一、导入数据
'''
1.1 设置GPU
'''
warnings.filterwarnings("ignore")
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
 
'''
1.2 导入数据
'''
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
data_dir = './bird_photos/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
def count_images(folder):
    count = 0
    for item in folder.iterdir():
        if item.is_file():
            count += 1
        if item.is_dir():
            count += count_images(item)
    return count
 
image_count = count_images(data_dir)
print("图片总数为:", image_count)
classNames = [str(path).split('\\')[1] for path in data_paths]
#利用split()函数对data_paths中的每个文件路径执行分割操作,获取各个文件所属的类别名称并储存在classNames中
# 4类天气,各300张图片
print(classNames)
 
#二、数据预处理
'''
2.1 加载数据
'''
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
total_data = datasets.ImageFolder("./bird_photos/",transform=train_transforms)
print(total_data)
print(total_data.class_to_idx)
 
'''
2.2 划分数据集
'''
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)
 
'''
2.3 可视化数据
'''
batch_size = 8
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=0)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
 
image_folder = './bird_photos/Cockatoo/'           #指定图像文件夹路径
 
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
fig, axes = plt.subplots(2, 4, figsize=(16, 6))
 
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')
plt.tight_layout()
plt.show()

输出如下:

cuda
图片总数为: 565
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
Dataset ImageFolder
    Number of datapoints: 565
    Root location: ./bird_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
{'Bananaquit': 0, 'Black Skimmer': 1, 'Black Throated Bushtiti': 2, 'Cockatoo': 3}
<torch.utils.data.dataset.Subset object at 0x000002B46F47B730> <torch.utils.data.dataset.Subset object at 0x000002B46F47B6A0>
Shape of X [N, C, H, W]:  torch.Size([8, 3, 224, 224])
Shape of y:  torch.Size([8]) torch.int64
 

2.2 DenseNet121模型构建

DenseNet121模型结构如下:

2.2.1 DenseLayer模块

实现DenseLayer中的内部结构,这里是BN+ReLU+1×1Conv+BN+ReLU+3×3Conv结构,最后也加入dropout层用于训练过程。

代码如下:

'''
3.1 DenseLayer层实现
'''
class _DenseLayer(nn.Sequential):
    """Basic unit of DenseBlock (using bottleneck layer) """

    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
        self.add_module('relu1', nn.ReLU(inplace=True)),
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate,
                                           kernel_size=1, stride=1, bias=False)),
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
        self.add_module('relu2', nn.ReLU(inplace=True)),
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False)),
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)

2.2.2 DenseBlock模块

实现DenseBlock模块,内部是密集连接方式(输入特征数线性增长)

代码如下:

'''
3.2 DenseBlock模块
'''
class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size, drop_rate)
            self.add_module("denselayer%d" % (i+1,), layer)

2.2.3 Transition模块

主要是一个卷积层和一个池化层

代码如下:

'''
3.3 Transition层
'''
class _Transition(nn.Sequential):
    def __init__(self, num_input_feature, num_output_features):
        super(_Transition, self).__init__()
        self.add_module("norm", nn.BatchNorm2d(num_input_feature))
        self.add_module("relu", nn.ReLU(inplace=True))
        self.add_module("conv", nn.Conv2d(num_input_feature,num_output_features,kernel_size=1, stride=1, bias=False))
        self.add_module("pool", nn.AvgPool2d(2, stride=2))

2.2.4 DenseNet网络实现

代码如下:

'''
3.4 DenseNet网络实现
'''
from collections import OrderedDict
class DenseNet(nn.Module):
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
                 bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):
        super(DenseNet, self).__init__()
        #first Conv2d
        self.features = nn.Sequential(OrderedDict([
            ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ("norm0", nn.BatchNorm2d(num_init_features)),
            ("relu0", nn.ReLU(inplace=True)),
            ("pool0", nn.MaxPool2d(3, stride=2, padding=1))
        ]))

        #DenseBlock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
            self.features.add_module("denseblock%d" % (i+1),block)
            num_features += num_layers*growth_rate
            if i !=len(block_config) - 1:
                transition = _Transition(num_features, int(num_features*compression_rate))
                self.features.add_module("transition%d" % (i+1), transition)
                num_features = int(num_features * compression_rate)

        #final bn+ReLu
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
        self.features.add_module("relu5", nn.ReLU(inplace=True))

        #classification layer
        self.classifier = nn.Linear(num_features,num_classes)

        #params initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        return out

2.2.5 DenseNet121网络实现

选择不同网络参数,就可以实现不同深度的DenseNet,而且Pytorch提供训练好的网络参数

代码如下:

#加载pytorch预训练的模型
model_urls = {
    'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
    'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
    'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth'}


def densenet121(pretrained=False, **kwargs):
    """DenseNet121"""
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), **kwargs)
    if pretrained:
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    return model

2.2.6 模型实例化

进行DenseNet121模型实例化并进行模型结构打印查看

"""搭建densenet121模型"""
import torchsummary as summary
# model = densenet121().to(device)
model = densenet121(True).to(device)  # 使用预训练模型
print(model)
print(summary.summary(model, (3, 224, 224)))  # 查看模型的参数量以及相关指标

模型打印输出为:

这里只截取部分

三、训练模型

训练函数和测试函数都与前面的文章中一致

代码如下:

'''
4.1 编写训练函数
'''
def train(dataloader, model, optimizer, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)

    train_acc, train_loss = 0, 0

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)

        pred = model(X)
        loss = loss_fn(pred, y)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()

    train_loss /= num_batches
    train_acc /= size

    return train_acc, train_loss

'''
4.2 编写测试函数
'''
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

'''
4.3 正式训练
'''

loss_fn = nn.CrossEntropyLoss()   #交叉熵函数
learn_rate = 1e-3
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0

# 开始训练
for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, opt, loss_fn)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    lr = opt.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))

print('Done')

训练过程如下:

四、结果可视化

代码如下:

#五、结果可视化
import warnings
warnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    #用来正常显示负号
plt.rcParams['figure.dpi'] = 100              #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

打印输出如下:

五、指定图片预测

代码如下:

#六、指定图片预测
classes = list(total_data.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)

    img = test_img.to(device).unsqueeze(0)

    model.eval()
    output = model(img)

    _, pred = torch.max(output, 1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

    # 预测训练集中的某张照片

predict_one_image(image_path='./bird_photos/Bananaquit/007.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

输出结果:Bananaquit

预测正确


总结

  • 对DensetNet网络进行了实践,初步了解了它的原理以及它与ResNet的差异
  • 暂未对tensflow框架进行学习,所以这里还未将代码修改为基于tensflow的代码
  • 11
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值