字符串哈希算法
该算法的目的是将字符串转化为哈希值,这样的话在做字符串匹配的题的时候可以大大降低时间复杂度,仅需O(1)的时间复杂度即可。
首先要设一个P值,为每次进位所相乘的数,即将字符串看成一个P进制的数。一般设为13331。
同时我们需要设两个数组h[n+1],p[n+1]。其中h用来存储算出的字符串的哈希值,p用来存储这是第几次进位。初始化p[0]=1,h[0]=0。
因此我们可以计算一个字符串s的中每个以0开始,i结尾的子字符串的哈希值
如字符串a=“abcde”,b=“abcdefgh”;其中a的哈希值为1234,b的哈希值为1234567
则"fgh"的哈希值为1234567-1234*10^(7-5+1)=567
long[] h, p;
int P = 1313131, n = s.length();
h = new long[n+1]; p = new long[n+1];
p[0] = 1;
for (int i = 0; i < n; i++) {
p[i + 1] = p[i] * P;
h[i + 1] = h[i] * P + s.charAt(i);
}
因此我们如果需要计算字符串s的子字符串的哈希值时,只需要知道其开始位置i和结束位置j,利用前缀和的思想(h[n]数组表示的正是前n个字符串的哈希值)
long cur=h[j+1]-h[i]*p[j-i+1]
例题:leetcode 1044

class Solution {
long[] h, p;
public String longestDupSubstring(String s) {
int P = 1313131, n = s.length();
h = new long[n+1]; p = new long[n+1];
p[0] = 1;
for (int i = 0; i < n; i++) {
p[i + 1] = p[i] * P;
h[i + 1] = h[i] * P + s.charAt(i);
}
String ans = "";
int l = 1, r = n-1;
while (l <=r) {
int mid = l+(r-l)/2;
String t = check(s, mid);
if (t.length() != 0) l = mid+1;
else r = mid - 1;
ans = t.length() > ans.length() ? t : ans;
}
return ans;
}
String check(String s, int len) {
int n = s.length();
Set<Long> set = new HashSet<>();
for (int i = 0; i<n-len+1; i++) {
int j = i + len - 1;
long cur = h[j+1] - h[i] * p[j - i + 1];
if (set.contains(cur)) return s.substring(i, j+1);
set.add(cur);
}
return "";
}
}
本文介绍了字符串哈希算法,通过设置P值和使用前缀和思想,实现O(1)时间复杂度计算子字符串哈希值。算法在解决字符串匹配问题时效率显著,例如在LeetCode的1044题中。此外,代码示例展示了如何在Java中实现这一算法。
961

被折叠的 条评论
为什么被折叠?



