import cv2
import numpy as np
img_rgb = cv2.imread('2.png')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('modle.jpg', 0) # 模板图片
h, w = template.shape[:2]
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
# np.where返回的坐标值(x,y)是(h,w),注意h,w的顺序
for pt in zip(*loc[::-1]):
bottom_right = (pt[0] + w, pt[1] + h)
cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)
cv2.imwrite("2_label.jpg", img_rgb)
# cv2.imshow('img_rgb', img_rgb)
# cv2.waitKey(0)
for pt in zip(*loc[::-1]):print(pt) # 返回的为【左小角】点的位置
# tuple数据提取
a =loc[::-1]
# 提取行
a[0]
a[0].size
a[0][0] # 第一次出现的wight坐标
a[1]
a[1][1] # 第一次出现的hight坐标
a[1].size
a[1][0]
a[1][1]
a[1][2]
# 获得图像大小
print(img_rgb.shape)
b = img_rgb.shape[0]
# [从竖直方向截取 , 从水平方向截取(保持固定)]
cropped_image1 = img_rgb[a[1][0]:a[1][1], 0:1020] # Slicing to crop the image
cropped_image2 = img_rgb[a[1][1]:a[1][2], 0:1020]
cropped_image3 = img_rgb[a[1][2]:a[1][3], 0:1020]
cropped_image4 = img_rgb[a[1][3]:a[1][4], 0:1020]
for i in range(1,(a[1].size)): # 最后一个要到最底
exec('cropped_image' + str(i) + '=' +'img_rgb[a[1][i-1]:a[1][i], 0:1020]')
exec("cv2.imwrite('"+"./qiege/"+str(i)+".png'"+",cropped_image"+str(i)+")")
exec('cropped_image' + str(a[1].size + 1) + '=' +
'img_rgb[a[1][a[1].size-1]:b, 0:1020]')
exec("cv2.imwrite('"+"./qiege/"+str(a[1].size + 1)+
".png'"+",cropped_image"+str(a[1].size + 1)+")")
# cv2.imwrite("./qiege/001_1.jpg", cropped_image1)
【python】opneCV 超长图 定位位置特殊标记 横线切分
这段代码展示了如何使用OpenCV进行图像处理,包括读取图片、灰度转换、模板匹配以及根据匹配结果进行区域定位和裁剪。作者通过`TM_CCOEFF_NORMED`模板匹配算法找到模版在图像中的位置,并创建多个子图进行详细分析。
摘要由CSDN通过智能技术生成