7-5 路径判断 (20 分)
给定一个有N个顶点和E条边的无向图,请判断给定的两个顶点之间是否有路径存在。 假设顶点从0到N−1编号。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。
随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
最后一行给出两个顶点编号i,j(0≤i,j<N),i和j之间用空格分隔。
输出格式:
如果i和j之间存在路径,则输出"There is a path between i and j.",
否则输出"There is no path between i and j."。
输入样例1:
7 6
0 1
2 3
1 4
0 2
1 3
5 6
0 3
结尾无空行
输出样例1:
There is a path between 0 and 3.
结尾无空行
输入样例2:
7 6
0 1
2 3
1 4
0 2
1 3
5 6
0 6
结尾无空行
输出样例2:
There is no path between 0 and 6.
结尾无空行
思路:
用邻接表储存图,从一个顶点开始深搜遍历,遍历过的标记为1,最后判断visit[y]是否为1即可
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
//存储图
int a[100][100], N, E;
//判断是否可以遍历到
int visit[20];
//深搜遍历
void dfs(int index) {
visit[index] = 1;
for (int i = 0;i < N;i++) {
if (visit[i] == 0 && a[index][i] == 1) {
visit[i] = 1;
dfs(i);
}
}
}
int main() {
cin >> N >> E;
//初始化
memset(visit, 0, sizeof(visit));
for (int i = 0;i < N;i++) {
a[i][i] = 1;
}
//输入存储图
while (E--) {
int x, y;
cin >> x >> y;
a[x][y] = a[y][x] = 1;
}
int x, y;
cin >> x >> y;
dfs(x);
if (visit[y] == 1)
{
printf("There is a path between %d and %d.", x, y);
}
else
{
printf("There is no path between %d and %d.", x, y);
}
return 0;
}