- 博客(10)
- 收藏
- 关注
原创 利用Python爬取数据集(全面且高效,按部就班则成)
修改后记得Ctrl+s保存后,再在windows终端输入运行程序指令即可(下图就是没保存 运行没有修改的代码):安装时记得勾选 "Add Python to PATH" 选项 (不用本地的也可以使用在线的:Google Colab。
2025-04-09 17:02:25
412
原创 GPU的使用___ubuntu上的Mesa的编译安装
这里可能会出现很多问题,一般ubuntu下不会只有一个meson(ubunt会给个、你用开发板的时候交叉编译器会给、等等,所以就有环境变量等等问题 或者 要指定那个meson来编译。利用Qt交叉编译,至少三个地方要移植库,交叉编译器、ubuntu和开发板根文件系统,我是开发板上有特定版本的mesa,所以想试着在ubuntu上安装对应的版本。按照以上总步骤,就可以成功安装编译mesa(ubuntu千奇百怪的配置,也可能会有很多小伙伴,会失败,可能是各种依赖库的问题或者其他,这里我就说说我遇见的问题)
2024-08-11 11:44:15
1375
原创 基于深度学习的工业缺陷检测(早期阶段《二》)
创作缘由: 书接上回,言归正卷,边缘检测来啦!!!加油,有问题请指出,”不必客气“🆒 本文会将必要的文献等资料整理成压缩包,挂在上面供大家下载。文献资料的名字都会用淡红色给出哦!-----------------------------------------------------------------------基于深度学习的工业缺陷检测-----------------------------------------------------
2024-07-05 17:13:18
1140
原创 基于深度学习的工业缺陷检测(早期阶段)
一、历史发展上篇文章,我们讲了一个总概,那么现在肯定到了该逐一讨论的时刻啦,今天我们就讲讲早期阶段中,我们做开发或者研究一定会考虑到的东西:阈值分割,一个从软件层面上提升硬件采集能力的方法。Go!(早起阶段不仅仅有阈值分割,其实是还有很多突破点的:就比如边缘检测,这里就允许我用一个点来跟大家一起讨论吧,由于篇幅的限制,可能下期再续论:边缘检测)本文会将必要的文献等资料整理成压缩包,挂在上面供大家下载。文献资料的名字都会用淡红色给出哦!
2024-06-26 14:58:36
1191
1
原创 基于深度学习的工业缺陷检测(续篇)
想啊,想啊,想啊,这次写那个更好呢?为了我们一起学习和减少各位的资料寻找时间,最后我决定下来,搜集资料写一篇《基于机器视觉的工业缺陷检测的论述和展望》的文章(这也是为啥答应的快速更新,最后搞了这么久才更新,说实话),用于我们更加了解这个研究方向,正所谓“”嘛。如果各位觉得这篇文章写的不错或者觉得对你有所收获,还请各位给予一定打赏。“赠人玫瑰,手留余香。”最后,建议各位直接看原文章,文章中我精心标准了各个阶段的具体文献,若有不懂可以直接搜索对应的文献查阅。
2024-06-01 13:56:15
818
原创 基于深度学习的工业缺陷检测(开篇)
为了更好了解深度学习,下面推荐了一篇深度学习的综述和一本深度学习的学习书籍,各位可以抽空看看【深度学习领域的领军人物Yann LeCunGeoffrey Hinton出品】吗,相信你会有不少的收获。
2024-04-27 16:40:33
2799
原创 亚像素边缘检测
像素边缘检测的博客多如牛毛,而亚像素边缘检测几乎无人去提及,但是亚像素边缘检测在许多高精度图像处理领域非常重要,包括机器视觉、医学成像、遥感图像分析等,其中对图像质量和精确度的要求极高。今天我就斗胆来做个总结和表达一些自己对其的理解,若有错误,还请各位指出!!!共勉。
2024-04-16 09:49:22
1868
原创 OpenCV中滤波算法的归纳
在OpenCV中,滤波是一种常见的图像处理技术,用于去噪、平滑或锐化图像。不同的滤波方法有不同的特点和适用场景。
2024-04-04 14:52:32
1556
1
原创 图像处理、图像分析和图像理解的理解归纳
*(Image Understanding)图像理解是最高层次的,它不仅涉及到检测和识别图像中的物体和特征,还要对这些物体和特征进行解释,以理解图像所表达的场景或情境。**(Image Analysis)图像分析是建立在图像处理的基础上的,它涉及对处理过后的图像进行测量和提取有意义的信息。物体之间的关系理解图像理解可能涉及到使用机器学习和人工智能的方法,如深度学习和模式识别。形态学操作处理的结果通常是一个新的改进了的图像,或者为下一步的分析准备的图像数据。而图像理解则是对图像内容的综合解释和推理。
2024-04-02 14:42:41
1612
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人