试题 算法训练 拦截导弹
问题描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
一行,为导弹依次飞来的高度
输出格式
两行,分别是最多能拦截的导弹数与要拦截所有导弹最少要配备的系统数
样例输入
389 207 155 300 299 170 158 65
样例输出
6
2
思路:
从题意中我们知道就是求最多可以拦截的导弹数,那么就是求最长递减字串长度。求最少的系统数,就是求最长非递减字串的长度。求最长递减字串长度和聪明的美食家是一样的道理,我们知道至少可以拦截导弹的次数为1个所以初始值为1.我们可以当1到i的导弹求最长递减字串长度,然后不断的求出最长递减字串长度。
程序:
n=list(map(int,input

本文介绍了一种导弹拦截系统,其特点是每一发炮弹的高度不能高于前一发。给定导弹飞行高度数据,求解系统最多能拦截多少导弹以及拦截所有导弹所需的最少系统数量。通过动态规划解决最长递减子序列问题,实现求解这两个指标。
最低0.47元/天 解锁文章
723

被折叠的 条评论
为什么被折叠?



