前言
由于网站注册入口容易被黑客攻击,存在如下安全问题:
- 暴力破解密码,造成用户信息泄露
- 短信盗刷的安全问题,影响业务及导致用户投诉
- 带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞
所以大部分网站及App 都采取图形验证码或滑动验证码等交互解决方案, 但在机器学习能力提高的当下,连百度这样的大厂都遭受攻击导致点名批评, 图形验证及交互验证方式的安全性到底如何? 请看具体分析
一、 live800PC端注册入口
简介:Live800 是成都天润金铠甲科技有限公司独立研发的企业级智能营销客服平台,以“人工客服系统+智能机器人系统”两大核心系统为基础,为企业提供整体在线营销与服务解决方案。
从营业至今,Live800已服务近千家付费高端和世界500强企业,为其中数百家知名企业实施服务器独立项目开发并成功部署,在国内中高端用户上占据重要地位。客户案例覆盖电子商务、高端奢侈品、金融行业、汽车制造、教育培训、医疗医美等领域,深度积累了丰富的各行业解决方案。
二、 安全性分析报告:
采用腾讯的智能验证,包含点击和滑动验证,容易被模拟器绕过甚至逆向后暴力攻击,滑动拼图识别率在 95% 以上。
三、 测试方法:
前端界面分析,这是腾讯v1版本,比较简单,网上有大量的文章参考, 我们采用模拟器的方式,关键点主要模拟器交互、距离识别和轨道算法3部分。
1. 模拟器交互部分
private final String INDEX_URL = "https://www.live800.com/register/";
@Override
public RetEntity send(WebDriver driver, String areaCode, String phone) {
RetEntity retEntity = new RetEntity();
WebElement phoneElemet, loginElemet;
try {
driver.get(INDEX_URL);
// 输入手机号
phoneElemet = ChromeDriverManager.waitElement(driver, By.name("phone"), 100);
phoneElemet.sendKeys(phone);
// 点击获取验证码
loginElemet = ChromeDriverManager.waitElement(driver, By.id("TencentCaptcha"), 100);
loginElemet.click();
// 计算移动距离
RetEntity ret = tencentClient.moveExec(driver);
if (ret.getRet() == -1) {
System.out.println("moveExec() ret=" + ret);
return null;
}
// send msg ret
Thread.sleep(1000);
String str = loginElemet.getText();
System.out.println("str=" + str);
retEntity.setMsg(str);
if (str.contains("s")) {
retEntity.setRet(0);
} else {
retEntity.setRet(-1);
}
return retEntity;
} catch (Throwable e) {
System.out.println("phone=" + phone + ",e=" + e.toString());
for (StackTraceElement ele : e.getStackTrace()) {
System.out.println(ele.toString());
}
return null;
}
}
public RetEntity moveExec(WebDriver driver, boolean switchTo) {
RetEntity retEntity = new RetEntity();
retEntity.setRet(-1);
if (switchTo) {
// 获取到验证区域
WebElement iframe = ChromeDriverManager.waitElement(driver, By.id("tcaptcha_iframe"), 100);
if (iframe == null) {
System.out.println("moveExec() tcaptcha_iframe|timeout!!!");
return null;
}
driver.switchTo().frame(iframe);
}
sleep(500);
// 获取带阴影的背景图
String bgUrl = ChromeDriverManager.waitElement(driver, By.id("slideBg"), 500).getAttribute("src");
sleep(500);
// 获取带阴影的小图
WebElement webSlide = ChromeDriverManager.waitElement(driver, By.id("slideBlock"), 100);
String sUrl = webSlide.getAttribute("src");
sleep(500);
if (bgUrl == null || "".equals(bgUrl) || sUrl == null || "".equals(sUrl)) {
System.out.println("moveExec() err: bgUrl=" + bgUrl + ",sUrl=" + sUrl);
return retEntity;
}
String style = null;
try {
Map<String, String> outMap = openCv2.getMoveDistance("tencent", bgUrl, sUrl);
String distanceStr = (outMap != null) ? outMap.get("distance") : null;
String width = (outMap != null) ? outMap.get("width") : null;
Double left = 38.0 * 680 / 340;// 起点距左边距离
Double act = (Double.parseDouble(distanceStr) - left - Double.parseDouble(width)) * 340.0 / 680.0;
Integer distance = act.intValue();
System.out.println("moveExec() distance(" + distanceStr + ")=" + distance);
// 获取滑动按钮
if (distance == null || distance <= 0) {
return retEntity;
}
WebElement moveElemet = ChromeDriverManager.waitElement(driver, By.id("tcaptcha_drag_button"), 100);
sleep(500);
// 滑动
ActionMove.move(driver, moveElemet, distance);
sleep(400);
// 滑动结果
String gtInfo = ChromeDriverManager.waitElement(driver, By.id("statusSuccess"), 100).getText();
if (gtInfo == null || "".equals(gtInfo)) {
sleep(200);
gtInfo = ChromeDriverManager.waitElement(driver, By.id("statusError"), 100).getText();
}
System.out.println("moveExec() gtInfo=" + gtInfo);
retEntity.setMsg(gtInfo);
if (gtInfo.contains("只用了") || gtInfo.contains("无敌了")) {
retEntity.setRet(0);
} else if (gtInfo.contains("再试一次") || gtInfo.contains("恍惚了") || gtInfo.contains("半路丢了")) {
retEntity.setRet(-1);
}
return retEntity;
} catch (Exception e) {
System.out.println("moveExec() style=" + style + "," + e);
retEntity.setMsg(e.toString());
return retEntity;
}
}
2. 距离识别
/**
*
* @param ckSum
* @param bigBytes
* @param smallBytes
* @param factory
* @return { width, maxX }
*/
public String[] getOpenCvDistance(String ckSum, byte bigBytes[], byte smallBytes[], String factory, int border) {
try {
String basePath = ConstTable.codePath + factory + "/";
File baseFile = new File(basePath);
if (!baseFile.isDirectory()) {
baseFile.mkdirs();
}
// 小图文件
File smallFile = new File(basePath + ckSum + "_s.png");
FileUtils.writeByteArrayToFile(smallFile, smallBytes);
// 大图文件
File bigFile = new File(basePath + ckSum + "_b.png");
FileUtils.writeByteArrayToFile(bigFile, bigBytes);
// 边框清理(去干扰)
byte[] clearBoder = (border > 0) ? ImageIOHelper.clearBoder(smallBytes, border) : smallBytes;
File tpFile = new File(basePath + ckSum + "_t.png");
FileUtils.writeByteArrayToFile(tpFile, clearBoder);
String resultFile = basePath + ckSum + "_o.png";
return getWidth(tpFile.getAbsolutePath(), bigFile.getAbsolutePath(), resultFile);
} catch (Throwable e) {
logger.error("getMoveDistance() ckSum=" + ckSum + " " + e.toString());
for (StackTraceElement elment : e.getStackTrace()) {
logger.error(elment.toString());
}
return null;
}
}
/**
* Open Cv 图片模板匹配
*
* @param tpPath
* 模板图片路径
* @param bgPath
* 目标图片路径
* @return { width, maxX }
*/
private String[] getWidth(String tpPath, String bgPath, String resultFile) {
try {
Rect rectCrop = clearWhite(tpPath);
Mat g_tem = Imgcodecs.imread(tpPath);
Mat clearMat = g_tem.submat(rectCrop);
Mat cvt = new Mat();
Imgproc.cvtColor(clearMat, cvt, Imgproc.COLOR_RGB2GRAY);
Mat edgesSlide = new Mat();
Imgproc.Canny(cvt, edgesSlide, threshold1, threshold2);
Mat cvtSlide = new Mat();
Imgproc.cvtColor(edgesSlide, cvtSlide, Imgproc.COLOR_GRAY2RGB);
Imgcodecs.imwrite(tpPath, cvtSlide);
Mat g_b = Imgcodecs.imread(bgPath);
Mat edgesBg = new Mat();
Imgproc.Canny(g_b, edgesBg, threshold1, threshold2);
Mat cvtBg = new Mat();
Imgproc.cvtColor(edgesBg, cvtBg, Imgproc.COLOR_GRAY2RGB);
int result_rows = cvtBg.rows() - cvtSlide.rows() + 1;
int result_cols = cvtBg.cols() - cvtSlide.cols() + 1;
Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);
Imgproc.matchTemplate(cvtBg, cvtSlide, g_result, Imgproc.TM_CCOEFF_NORMED); // 归一化平方差匹配法
// 归一化相关匹配法
MinMaxLocResult minMaxLoc = Core.minMaxLoc(g_result);
Point maxLoc = minMaxLoc.maxLoc;
Imgproc.rectangle(cvtBg, maxLoc, new Point(maxLoc.x + cvtSlide.cols(), maxLoc.y + cvtSlide.rows()), new Scalar(0, 0, 255), 1);
Imgcodecs.imwrite(resultFile, cvtBg);
String width = String.valueOf(cvtSlide.cols());
String maxX = String.valueOf(maxLoc.x + cvtSlide.cols());
System.out.println("OpenCv2.getWidth() width=" + width + ",maxX=" + maxX);
return new String[] { width, maxX };
} catch (Throwable e) {
System.out.println("getWidth() " + e.toString());
logger.error("getWidth() " + e.toString());
for (StackTraceElement elment : e.getStackTrace()) {
logger.error(elment.toString());
}
return null;
}
}
3. 轨道生成及移动算法
/**
* 根据距离获取滑动轨迹
*
* @param distance需要移动的距离
* @return
*/
public static List<Integer> getTrack(int distance) {
List<Integer> track = new ArrayList<Integer>();// 移动轨迹
List<Integer[]> list = getXyTrack(distance);
for (Integer[] m : list) {
track.add(m[0]);
}
return track;
}
/**
* 双轴轨道生成算法,主要实现平滑加速和减速
*
* @param distance
* @return
*/
public static List<Integer[]> getXyTrack(int distance) {
List<Integer[]> track = new ArrayList<Integer[]>();// 移动轨迹
try {
int a = (int) (distance / 3.0) + random.nextInt(10);
int h = 0, current = 0;// 已经移动的距离
BigDecimal midRate = new BigDecimal(0.7 + (random.nextInt(10) / 100.00)).setScale(4, BigDecimal.ROUND_HALF_UP);
BigDecimal mid = new BigDecimal(distance).multiply(midRate).setScale(0, BigDecimal.ROUND_HALF_UP);// 减速阈值
BigDecimal move = null;// 每次循环移动的距离
List<Integer[]> subList = new ArrayList<Integer[]>();// 移动轨迹
boolean plus = true;
Double t = 0.18, v = 0.00, v0;
while (current <= distance) {
h = random.nextInt(2);
if (current > distance / 2) {
h = h * -1;
}
v0 = v;
v = v0 + a * t;
move = new BigDecimal(v0 * t + 1 / 2 * a * t * t).setScale(4, BigDecimal.ROUND_HALF_UP);// 加速
if (move.intValue() < 1)
move = new BigDecimal(1L);
if (plus) {
track.add(new Integer[] { move.intValue(), h });
} else {
subList.add(0, new Integer[] { move.intValue(), h });
}
current += move.intValue();
if (plus && current >= mid.intValue()) {
plus = false;
move = new BigDecimal(0L);
v = 0.00;
}
}
track.addAll(subList);
int bk = current - distance;
if (bk > 0) {
for (int i = 0; i < bk; i++) {
track.add(new Integer[] { -1, h });
}
}
System.out.println("getMoveTrack(" + midRate + ") a=" + a + ",distance=" + distance + " -> mid=" + mid.intValue() + " size=" + track.size());
return track;
} catch (Exception e) {
System.out.print(e.toString());
return null;
}
}
/**
* 模拟人工移动
*
* @param driver
* @param element页面滑块
* @param distance需要移动距离
* @throws InterruptedException
*/
public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException {
List<Integer[]> track = getXyTrack(distance);
if (track == null || track.size() < 1) {
System.out.println("move() track=" + track);
}
int moveY, moveX;
StringBuffer sb = new StringBuffer();
try {
Actions actions = new Actions(driver);
actions.clickAndHold(element).perform();
Thread.sleep(20);
long begin, cost;
Integer[] move;
int sum = 0;
for (int i = 0; i < track.size(); i++) {
begin = System.currentTimeMillis();
move = track.get(i);
moveX = move[0];
sum += moveX;
moveY = move[1];
if (moveX < 0) {
if (sb.length() > 0) {
sb.append(",");
}
sb.append(moveX);
}
actions.moveByOffset(moveX, moveY).perform();
cost = System.currentTimeMillis() - begin;
if (cost < 3) {
Thread.sleep(3 - cost);
}
}
if (sb.length() > 0) {
System.out.println("-----backspace[" + sb.toString() + "]sum=" + sum + ",distance=" + distance);
}
Thread.sleep(180);
actions.release(element).perform();
Thread.sleep(500);
} catch (Exception e) {
StringBuffer er = new StringBuffer("move() " + e.toString() + "\n");
for (StackTraceElement elment : e.getStackTrace())
er.append(elment.toString() + "\n");
logger.error(er.toString());
System.out.println(er.toString());
}
}
4. OpenCv 轮廓匹配测试样例:
四丶结语
Live800 是成都天润金铠甲科技有限公司独立研发的企业级智能营销客服平台,以“人工客服系统+智能机器人系统”两大核心系统为基础,为企业提供整体在线营销与服务解决方案,拥有一定的互联网架构设计能力, 采用的是通俗的滑动验证产品, 该产品稳定并且市场占有率很高, 在一定程度上提高了用户体验, 但安全性在机器学习的今天, 已经无法应对攻击了,并且正是由于该产品通俗, 所以在网上破解的文章和教学视频也是大量存在,并且经过验证滑动产品很容易被破解, 所以除了滑动验证方式, 花样百出的产品层出不穷,但本质就是牺牲用户体验来提高安全。
很多人在短信服务刚开始建设的阶段,可能不会在安全方面考虑太多,理由有很多。
比如:“ 需求这么赶,当然是先实现功能啊 ”,“ 业务量很小啦,系统就这么点人用,不怕的 ” , “ 我们怎么会被盯上呢,不可能的 ”等等。有一些理由虽然有道理,但是该来的总是会来的。前期欠下来的债,总是要还的。越早还,问题就越小,损失就越低。
所以大家在安全方面还是要重视。(血淋淋的栗子!)#安全短信#
谷歌图形验证码在AI 面前已经形同虚设,所以谷歌宣布退出验证码服务, 那么当所有的图形验证码都被破解时,大家又该如何做好防御呢?
>>相关阅读
《腾讯防水墙滑动拼图验证码》
《百度旋转图片验证码》
《网易易盾滑动拼图验证码》
《顶象区域面积点选验证码》
《顶象滑动拼图验证码》
《极验滑动拼图验证码》
《使用深度学习来破解 captcha 验证码》
《验证码终结者-基于CNN+BLSTM+CTC的训练部署套件》