剑指 Offer 62. 圆圈中最后剩下的数字



题目

0,1,···,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字(删除后从下一个数字开始计数)。求出这个圆圈里剩下的最后一个数字。

例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。

在这里插入图片描述

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思考

著名的约瑟夫环问题:这是大佬的数学解题思路

总体我的理解:留下的num的上一次的下标=(当前index + m) % 上一轮剩余数字的个数

数学解法,O(n)O(n)
这么著名的约瑟夫环问题,是有数学解法的!
因为数据是放在数组里,所以我在数组后面加上了数组的复制,以体现是环状的。我们先忽略图片里的箭头:
【第一轮后面的数字应该是[0, 1, 2 ,3 ,4],手误打错了。。抱歉】
在这里插入图片描述

很明显我们每次删除的是第 mm 个数字,我都标红了。

第一轮是 [0, 1, 2, 3, 4] ,所以是 [0, 1, 2, 3, 4] 这个数组的多个复制。这一轮 2 删除了。

第二轮开始时,从 3 开始,所以是 [3, 4, 0, 1] 这个数组的多个复制。这一轮 0 删除了。

第三轮开始时,从 1 开始,所以是 [1, 3, 4] 这个数组的多个复制。这一轮 4 删除了。

第四轮开始时,还是从 1 开始,所以是 [1, 3] 这个数组的多个复制。这一轮 1 删除了。

最后剩下的数字是 3。

图中的绿色的线指的是新的一轮的开头是怎么指定的,每次都是固定地向前移位 mm 个位置。

然后我们从最后剩下的 3 倒着看,我们可以反向推出这个数字在之前每个轮次的位置。

最后剩下的 3 的下标是 0。

第四轮反推,补上 mm 个位置,然后模上当时的数组大小 22,位置是(0 + 3) % 2 = 1。

第三轮反推,补上 mm 个位置,然后模上当时的数组大小 33,位置是(1 + 3) % 3 = 1。

第二轮反推,补上 mm 个位置,然后模上当时的数组大小 44,位置是(1 + 3) % 4 = 0。

第一轮反推,补上 mm 个位置,然后模上当时的数组大小 55,位置是(0 + 3) % 5 = 3。

所以最终剩下的数字的下标就是3。因为数组是从0开始的,所以最终的答案就是3。

总结一下反推的过程,就是 (当前index + m) % 上一轮剩余数字的个数。

代码和注释

class Solution {
    public int lastRemaining(int n, int m) {
        // ArrayList<Integer> list = new ArrayList<>(n);
        // for (int i = 0; i < n; i++) {
        //     list.add(i);
        // }
        // int idx = 0;
        // while (n > 1) {
        //     idx = (idx + m - 1) % n;
        //     list.remove(idx);
        //     n--;
        // }
        // return list.get(0);

        int idx = 0;
        for(int i = 2; i<=n;i++){
            idx = (idx + m) % i;
        }
        return idx;
    }
}

总结

数学归纳

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值