剑指 Offer 42. 连续子数组的最大和



题目

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。
在这里插入图片描述

思考

前缀和也可以用来解决,但是相这种前缀和的值,求最大最小的时候我们完全可以使用动态方程的的方式解决

代码和注释

/**
        使用动态规划五部曲
        1.dp数组下标的含义
        2.确定递推公式
        3.初始化
        4.遍历顺序
        5.log验证
     */
     public int maxSubArray(int[] nums) {
        
        // 定义dp数组,dp下标表示每个子数组的和
        int[] dp = new int[nums.length];
// 递推公式 dp[i] = Math.Max(dp[i-1] + nums[i], nums[i]);【包含当前值的最大值,加当前值的最大中】
        // 初始化
        dp[0] = nums[0];
        // 最大值,最大存储位置
        int max = nums[0];
        // 遍历从前到后
        for(int i = 1; i <= nums.length - 1; i++){
            // 动态方程仅弄子数组和谁大
            dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
            max = Math.max(max, dp[i]);
        }
        
        return max;
     }

总结

以后这种前缀和的题,可以尝试使用动态规划来作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值