魔方还原算法(三) 上帝算法

本文介绍了魔方还原的上帝算法——Krof算法,该算法基于启发式函数和IDA*搜索策略。通过创建表存储魔方状态到还原状态的最小步数估计,并使用低估策略确保正确性。Krof算法通过分解魔方状态并使用三张表(角块、6个棱块、剩余6个棱块)来优化状态数。尽管搜索过程复杂,但通过迭代加深避免了爆内存的问题,实现了最小步数还原。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是有关魔方还原算法的第三篇,上帝算法——krof 算法。在篇一的时候说过,上帝算法那就是上帝还原魔方使用的算法嘛,上帝无所不知所以在还原的过程中每一步总是能够朝着距离还原状态更近的方向前进。因此使用上帝算法来还原魔方总是能够以最小步数来还原。

那么我们人类要怎么实现上帝算法呢?最直观的想法那就是要创建一张超大的表,里面存放魔方所有状态和能够使它距离还原状态更近一步的转动。这个想法的确是对的,看着上帝算法这么高大上的名字,实际上就是一种暴力美学

暴力归暴力,实现的时候也还是要注意优化,首先我们并不需要存储实际的转动,只需要存储当前状态距离还原状态有多远就行了。比如说当前状态 X 应用转动 F 变成状态 Y 之后距离还原状态还有 10 步,当前状态 X 应用转动 R 变成状态 Z 之后距离还原状态还有 8 步,那当然知道下一步应该应用转动 R。

其次这张表也不用创建所有状态来准确计算每个状态到还原状态的距离,我们使用启发式函数来估计,也就是像前文篇二中讲的那样分成几个表,单看角块还原的表,单看棱块还原的表,或者它们各种组合方式,这就像把整个魔方状态做了因式分解,单看因子还原的感觉。如此操作,状态数会少很多,这张表建立起来也就更容易些。

但有一个问题,这是用启发式函数来估计,估计?能保证结果的正确性使得还原步数最少吗?答案是可以的,前提是要低估,不能高估。如果看过篇二应该知道这张表我们是用来在搜索时剪枝用的,每次搜索的时候都有一个参数:当前还允许的步数。怎样剪枝的呢?每次搜索时查表得到当前状态到达还原状态至少需要的步数,如果这个步数大于允许的步数,剪掉

有了这个了解后来看看分别在低估和高估情况下的正确性如何:假如当前允许的步数为 5,低估情况下至少需要 3 步,高估情况下至少需要 5 步,实际需要 4 步。那么低估高估情况都没有被剪掉,低估没有超过 4 没什么问题,但高估了没有被剪掉仍然留在搜索空间树中就会导致错误结果。

上述将魔方还原分解成各个部分还原就是对当前状态到还原状态的低估,打个比方,当前魔方状态只还原角块需要 3 步,那么还原整个魔方至少需要 3 步,因为棱块的原因所以还原步数可能多于 3 步。这种启发式估计就是可行正确得因为它绝不会高估也就是绝不会超过实际最少的还原步数。

krof 算法里面使用了三张表:

  • 角块
  • 6 个棱块
  • 剩余 6 个棱块

角块 8 个,考虑位置方向,一共 8 ! × 3 7 8!\times3^7 8!×37 种情况,也就是有这么多表项。

6 个棱块,位置和方向都要考虑,则一共有 12 × 11 × 10 × 9 × 8 × 7 × 2 6 = 12 ! / 6 ! × 2 6 12\times11\times10\times9\times8\times7\times2^6=12!/6!\times2^6 12×11×10×9×8×7×26=12!/6!×26 种情况。

怎么生成这个表呢?前面也讲过,在这儿简述一遍伪码:

  1. 初始化有足够空间的数据库/表/数组
  2. 第一层结点:还原状态填 0
  3. 对上一层的每个状态应用每种转动操作得到新状态,如果没出现过,将当前结点所在层数减 1 填进表中,若出现过则跳过。
  4. 重复上述步骤直到没有新结点产生

总的来说就是一个广度优先搜索的过程,至于怎么给状态编码作为索引就看篇二了。

最后就是搜索算法,还是使用 IDA* 算法,话说这个算法本身也是 krof 在1985 年提出的。常用的搜索算法有深搜和广搜,这两个也是搜索算法的基础,其他各个形形色色的算法大都是以它俩为基础。要找最值,一般是用广搜,而 IDA*,迭代加深算法,它是以深搜的形式来写广搜,比如说此次搜索深度定为 1,没搜到结果,搜索深度定为 2 重新搜索,重复下去,所以虽然每次搜索是深搜的形式,但也还是能够找到最值的。这儿定下的搜索深度就是前面说的所允许的步数。

那为什么不直接使用广搜呢,因为广搜是要存储状态结点的,而魔方的状态数实在太多,每个结点的分支因子大约是 13.348,如果使用广搜,简直指数爆炸绝对爆内存。深搜就不会存储结点,而是使用栈来递归,又因为 IDA 设定了搜索深度,所以不会出现爆内存的情况,但是搜索时间增加了,有得就必有失*。

对于分子因子 13.348 说明一下,这个数字是根据实验结果算出来的,根据搜索空间数的深度和已产生的结点就能够估算出来。虽然对于每个状态结点我们可以应用 18 种操作,但是某些转动是不必要的,比如 RR’ ,再者就算应用了后续也可能产生相同结点,所以这个分支因子肯定是小于 18 的。

关于魔方的上帝算法,就这么多内容吧,大部分内容怎么编码,构建各种表,对称,后续优化都在前文篇二那一万六千字了,本文就不赘述了,主要也就是对科先巴算法作一些补充,krof 提出的这个算法本身也就是建立在科先巴的二阶段算法之上的。

简单来说就是把科先巴的二阶段变成一阶段,各个状态到还原状态的距离用个表存起来,再使用 IDA* 算法来搜索就是上帝算法了。

好啦,本文就到这里,有什么错误还请批评指正,也欢迎大家来同我交流学习进步。

<think>好的,用户想了解魔方复原算法和步进电机控制的相关技术实现。我需要结合提供的引用资料来组织回答。 首先,魔方复原算法方面,根据引用[2]、[4]、[5],主流的算法是Kociemba的二阶段算法,它能在较少的步骤内解魔方,比如引用[5]提到的CubeExplorer软件。需要解释这个算法的基本原理,分成两个阶段,以及它的优势,比如步骤少、效率高。另外,引用[2]提到“上帝之数”是20步,说明这个算法的高效性。 然后是步进电机的控制部分。引用[3]和[5]提到了机械结构设计,特别是如何用电机转动魔方面。需要详细说明步进电机如何精准控制角度,比如通过驱动器细分、脉冲信号控制。同时,引用[3]中提到固定中间块盖子到电机转轴,这可能涉及到机械臂或夹具的设计,这部分需要解释清楚。 还要注意硬件选型,比如步进电机的扭矩、转速是否适合魔方操作,是否需要减速装置。引用[3]提到用木板和胶枪搭建结构,说明实际搭建中的材料选择可能比较灵活,但需要稳固。 软件方面,引用[4]提到使用Arduino和可能的树莓派,需要说明如何将算法得到的步骤转化为电机的控制指令,可能涉及串口通信或GPIO控制。同时,代码示例可能会有帮助,比如展示如何发送脉冲信号控制电机转动。 可能的问题点包括:如何确保电机转动的精确性,避免错位;多个电机如何协调工作;魔方的颜色识别机制如何与电机控制结合。不过用户的问题主要关注算法和电机控制,可能颜色识别部分可以简要带过,或者提到需要摄像头或传感器配合。 最后,生成相关问题时要围绕算法优化、电机选型、机械结构设计、软硬件集成等方面,确保问题有针对性,帮助用户深入理解。</think>### 魔方复原算法与步进电机控制技术实现 #### 1. 魔方复原算法 **核心算法:Kociemba二阶段算法** 该算法魔方还原分为两个阶段[^2][^5]: 1. **第一阶段**:将魔方还原至一个中间状态(如“$G_1$”群状态),此时魔方满足特定约束(例如棱块和角块的位置正确性)。 2. **第二阶段**:从中间状态进一步还原至最终状态。 该算法的优势在于步骤数极少(通常少于20步),且可通过开源库(如`kociemba`)直接集成到控制系统中[^4]。 **数学表示** 魔方状态空间复杂度为: $$N = 43252003274489856000$$ 而Kociemba算法通过分组约简,将搜索空间大幅压缩,最终实现高效求解。 #### 2. 步进电机控制 **机械结构设计** - **关键组件**:步进电机通过固定魔方中心块盖子的方式直接驱动魔方面转动[^3]。例如,将电机转轴与魔方中心块粘合,通过正/反转实现$90^\circ$、$180^\circ$等角度旋转。 - **电机选型**:需选择扭矩足够(如$0.3\text{N·m}$以上)的步进电机,并搭配减速箱以提高精度。 **控制逻辑** - **脉冲信号控制**:通过驱动器发送脉冲信号(如$200$脉冲/圈)控制电机步进角度,代码示例如下: ```python # 以Arduino为例控制步进电机旋转90度 def rotate_motor(angle): steps = int(angle / 1.8) # 假设步距角为1.8度 for _ in range(steps): digitalWrite(STEP_PIN, HIGH) delayMicroseconds(500) digitalWrite(STEP_PIN, LOW) delayMicroseconds(500) ``` - **多电机协同**:需通过定时器或并行线程控制多个电机,避免动作冲突。 #### 3. 系统集成 - **软硬件交互**:算法输出转动步骤(如`R U R' U'`)后,需将符号指令映射为具体电机的运动参数。 - **稳定性优化**:采用木板或3D打印支架固定电机,并加入光电传感器检测魔方位置偏移。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值