回溯算法时间复杂度分析

本文详细分析了子集、排列、组合、N皇后和数独问题在计算中的时间复杂度,分别阐述了它们的最坏情况下的时间复杂度和空间复杂度,均与n有关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

子集问题分析:

时间复杂度O(n x 2^n)。因为每一个元素的状态无外乎取与不取,一共2^n 种状态,每种状态都需要O(n)的构造时间,最终时间复杂度为O(n x 2^n)

空间复杂度:O(n),递归深度为n,所以系统栈所用空间为 O(n) 。

排列问题分析:

时间复杂度:: O(n x n!) 。因为一共n! 种排列,每种排列都需要O(n)的构造时间,最终时间复杂度为 O(n x n!) 。

空间复杂度: O(n),递归深度为n,所以系统栈所用空间为O(n)。

组合问题分析:

**时间复杂度:**O(C(下n,上k) x k) ,总共有 C(下n,上k) 种组合,每种组合需要O(n)的时间复杂度。另一方面,组合问题其实就是一种子集的问题,所以组合问题最坏的情况,也不会超过子集问题的时间复杂度 O(2 x 2^n) 。

空间复杂度:O(n) ,递归深度为n,所以系统栈所用空间为 O(n) 。

N皇后问题分析

时间复杂度: O(N!) ,其中 N 是皇后数量,由于每个皇后必须位于不同列,因此已经放置的皇后所在的列不能放置别的皇后。第一个皇后有 N 列可以选择,第二个皇后最多有 N-1列可以选择…。

空间复杂度:O(N) ,递归深度为n,所以系统栈所用空间为 O(N) 。

解数独问题分析

时间复杂度: O(9^m) ,m是’.'的数目。

空间复杂度: O(n^2) ,n是数独盘子的大小,递归的深度是 n^2 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

九五一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值