小红书-关键词库搭建

关键词库搭建+关键词自动分组

每一个关键词对应一个用户的真实需求

被动接收:系统推送

主动接收:

搜索→关键词(用户需求+精准用户群体区分)

互联网运营的目标:找到我们最佳的对标需求用户(精准用户)

关键词筛选工具

通过筛选,看你所想要涉及的领域具体方向,具体板块,倾向与哪方面延伸。

关键词搜索排名核心机制

  1. 搜索排名价值
  2. 搜索排名机制
  3. 搜索排名流量分配

案例

  1. 婴儿
  2. 婴儿用品推荐
  3. 婴儿注意事项
  4. 婴儿早教分享

以上都是长尾词

做流量就必须要有核心词

对长尾词、产品、成交的时候就要考虑对核心词所衍生出来的产品做分类,找到专门做类似产

### 小红书关键词爬虫实现 为了通过 Python 实现针对小红书平台的关键词爬虫,可以采用基于 API 的方法或是模拟浏览器行为的方法。考虑到效率和稳定性,推荐使用官方或半官方API接口进行数据获取[^1]。 #### 使用API方式抓取小红书关键词相关内容 对于希望快速搭建并运行的小型项目来说,利用现有的第三方库能极大简化开发流程。下面是一个简单的例子展示如何借助 `requests` 库向目标网站发送请求,并解析返回的数据: ```python import requests from urllib.parse import urlencode def fetch_notes_by_keyword(keyword): base_url = "https://www.xiaohongshu.com/web_api/sns/v1/search" params = { 'keyword': keyword, 'page_size': 20, # 每页显示条目数 'cursor': '', # 游标参数用于分页查询 } headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)', 'Referer': f'https://www.xiaohongshu.com/discovery/item/{keyword}' } response = requests.get(base_url + '?' + urlencode(params), headers=headers) if response.status_code == 200: data = response.json() notes = [] for item in data['data']['items']: note_info = {} note_info["id"] = item['id'] note_info["title"] = item['title'] note_info["desc"] = item['desc'] notes.append(note_info) return notes else: raise Exception(f"Failed to retrieve data with status code {response.status_code}") ``` 这段代码展示了怎样构建一个函数去根据给定的关键字搜索笔记列表。需要注意的是,在实际应用中还需要处理更多细节问题比如异常情况下的重试机制以及更复杂的反爬策略应对措施等[^2]。 #### 数据存储与进一步分析 获得所需的信息之后,可以选择将其保存到本地文件系统或者是数据库当中以便后续处理。例如,将上述得到的结果写入 JSON 文件: ```python import json with open('xiaohongshu_data.json', mode='w', encoding='utf8') as file_obj: json.dump(notes, file_obj, ensure_ascii=False, indent=4) ``` 此外还可以考虑对接其他数据分析工具来进行更加深入的研究工作,如可视化图表制作、情感倾向评估等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有点。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值