Python
文章平均质量分 88
wjzeroooooo
一个喜欢数据分析及挖掘的爱好者
展开
-
天池教学赛:银行客户认购产品预测
本次赛事由于样本不均衡的问题,简单训练可以到0.95左右,但要往上提分则需要不断的调参测试,让模型逼近数据的上限,最终通过多模型的中和,提高分数上限原创 2022-11-07 20:12:48 · 16807 阅读 · 63 评论 -
天池赛:宝可梦数据分析–龙系小精灵分享
本次比赛是一次不错的数据分析锻炼,即使你不了解宝可梦游戏,也可以通过数据得出客观的结论,并且这些结论都可以在百度得到验证,值得锻炼。原创 2022-09-12 22:43:21 · 3113 阅读 · 1 评论 -
天池长期赛:二手车价格预测(422方案分享)
本次比赛是一次很好的锻炼数据挖掘能力的入门赛,从EDA-数据清洗-特征工程-模型调参-模型融合,能够完整的学习到大数据的分析和挖掘,值得历练。原创 2022-09-01 06:00:00 · 10317 阅读 · 24 评论 -
数据分析达人赛 —— 用户情感可视化分析
一个很好的学习文本处理及可视化的赛题原创 2022-08-04 20:56:13 · 1692 阅读 · 2 评论 -
天池数据分析达人赛3:汽车产品聚类(含代码)
汽车产品的聚类可以很好的通过参数将品牌进行区分,如果是以竞品为目的,需要从价格出发,选取相应特征进行聚类,在对类别下的竞品进行筛选,进行更加精准的汽车画像定位。原创 2022-08-01 19:24:47 · 3725 阅读 · 4 评论 -
天池学习赛:保险反欺诈预测(附代码)
保险欺诈的成本相对较低,所以很多人(外部人员和内部人员)铤而走险通过制造事故获利,反欺诈一直是保险公司及行业协会研究的课题,本次的学习赛在数据方面其实可以给保险公司一些启发,通过数据特征的构建及模型的学习,成为反欺诈场景应用中的新工具。...原创 2022-07-29 19:39:43 · 19779 阅读 · 58 评论 -
阿里云天池大数据长期赛:金融风控-贷款违约预测(含代码)
本次比赛让自己在大数据的处理流程上有了更明确的认知,从数据清洗、特征工程、数据建模,每一个过程都能学到很多经验和知识,值得去历练。原创 2022-07-19 19:57:46 · 9153 阅读 · 10 评论 -
shap 解释理赔时效模型特征
shap 解释车险理赔时效模型原创 2022-06-08 19:08:33 · 2211 阅读 · 2 评论