1.倍增是什么?
请看我的另一篇文章 RMQ
2.什么是LCA?
Least Common Ancestors:顾名思义,最近并且公共的祖先,如下图H和M的LCA是E。
(这个算法我也是看了好久,才有点顿悟)
思路:这个算法暴力就是从最底部一点一点向上跳,但这样是非常耗时的。而采取倍增来做,就减少了跳的步数。利用一个二维数组f[ i ][ j ]而他表示的是从i,向上跳2^j个单位,其中通过递归来更新初始化 f 数组,而其中就利用了动态规划,f[ i ][ j ] = f[ f[i][j -1]][j -1],这可以这样理解,从i向上跳 2^j 个单位 = 从i先跳 2^(j-1)单位,然后再跳 2^(j-1) 个单位,就相当于 2^j = 2^(j-1) + 2^(j-1)
下面代码一洛谷一道经典的模板题作为样例:洛谷LCA
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5e5+10;
int tot,n,m,s,to[2*maxn],head[2*maxn],next[2*maxn];
int f[maxn][30],d[maxn];
void add(int x,int y){ //链式前向星存储
to[++tot] = y;next[tot] = head[x]; head[x] = tot;
}
void dfs(int u,int fa){
d[u] = d[fa]+1; //每递归一层,深度就要加一。
for(int i = 1; (1<<i) <= d[u]; i++)
f[u][i] = f[f[u][i-1]][i-1]; //动态转移方程,
for(int i = head[u]; i ; i = next[i]){
int v = to[i];
if(v == fa)continue; //只递归他的儿子节点,遇到父亲节点直接跳过,因为是无向图
f[v][0] = u; //f[v][0]表示从v向上跳2^0 = 1,也就是他的父节点
dfs(v,u);
}
}
int LCA(int a,int b){
if(d[a] < d[b]) swap(a,b); //强制定义a比b深度更深
for(int i = 20; i >= 0; i--){ //在这里有三种做法,我感觉还是这种好理解
if(d[f[a][i]] >= d[b]) a = f[a][i]; //先将a跳到b的高度
if(a == b) return a; //如果两个相等说明较高的b就是a与b的LCA
}
for(int i = 20; i >= 0; i--)
if(f[a][i] != f[b][i]) //找到最后一个不相等的,那么他们中任意一个就是他们的LCA
a = f[a][i],b = f[b][i];
return f[a][0]; //也可以return f[b][0];
}
int main(){
scanf("%d%d%d",&n,&m,&s);
for(int i = 1; i <= (n-1); i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x); //无向图
}
dfs(s,0);
while(m--){
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",LCA(a,b));
}
return 0;
}
第二个处理跳到相同高度的方法:x = fa[x][lg[depth[x]-depth[y]] - 1];
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5+10;
struct zzz {
int t, nex;
}e[maxn << 1]; int head[maxn], tot;
void add(int x, int y) {
e[++tot].t = y;
e[tot].nex = head[x];
head[x] = tot;
}
int depth[maxn], fa[maxn][22], lg[maxn];
void dfs(int now, int fath) { //now表示当前节点,fath表示它的父亲节点
fa[now][0] = fath;
depth[now] = depth[fath] + 1;
for(int i = 1; i <= lg[depth[now]]; ++i)
fa[now][i] = fa[fa[now][i-1]][i-1]; //这个转移可以说是算法的核心之一
//意思是now的2^i祖先等于now的2^(i-1)祖先的2^(i-1)祖先,2^i = 2^(i-1) + 2^(i-1)
for(int i = head[now]; i; i = e[i].nex)
if(e[i].t != fath) dfs(e[i].t, now);
}
int LCA(int x, int y) {
if(depth[x] < depth[y]) //用数学语言来说就是:不妨设x的深度 >= y的深度
swap(x, y);
while(depth[x] > depth[y])
x = fa[x][lg[depth[x]-depth[y]] - 1]; //先跳到同一深度
if(x == y) //如果x是y的祖先,那他们的LCA肯定就是x了
return x;
for(int k = lg[depth[x]] - 1; k >= 0; --k) //不断向上跳(lg就是之前说的常数优化)
if(fa[x][k] != fa[y][k]) //因为我们要跳到它们LCA的下面一层,所以它们肯定不相等,如果不相等就跳过去。
x = fa[x][k], y = fa[y][k];
return fa[x][0]; //返回父节点
}
int main() {
int n, m, s; scanf("%d%d%d", &n, &m, &s);
for(int i = 1; i <= n-1; ++i) {
int x, y; scanf("%d%d", &x, &y);
add(x, y); add(y, x);
}
for(int i = 1; i <= n; ++i) //预先算出log_2(i)+1的值,用的时候直接调用就可以了
lg[i] = lg[i-1] + (1 << lg[i-1] == i); //看不懂的可以手推一下
dfs(s, 0);
for(int i = 1; i <= m; ++i) {
int x, y; scanf("%d%d",&x, &y);
printf("%d\n", LCA(x, y));
}
return 0;
}
第三个处理跳到相同高度的方法:u = f[u][LG2[lowbit(d)]],d -= lowbit(d);
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 500010;
struct gra{ //链式前向星
int head[maxn],to[maxn<<1],nxt[maxn<<1],cnt;
void add(int a,int b){
nxt[++cnt] = head[a];
head[a] = cnt;
to[cnt] = b;
}
void clear(int n){
fill(head, head+1+n, 0),cnt = 0;
}
};
const int LOG = 19;
int n,m,s;
struct LCA:public gra{
int f[maxn][LOG],dep[maxn],LG2[maxn];
void init(){
dep[s] = 1,dfs(s);
for(int i = 0; i <= LOG-1; i++)LG2[(1<<i)] = i;
}
void dfs(int x){
for(int i = 1; i <= LOG-1; i++){
f[x][i] = f[f[x][i-1]][i-1];
}
for(int i = head[x]; i ; i = nxt[i]){
int u = to[i];
if(u==f[x][0])continue;
f[u][0] = x,dep[u] = dep[x] + 1;
dfs(u);
}
}
inline int lowbit(int x){return -x&x;}
int lca(int u,int v){
if(u == v) return u;
if(dep[v] > dep[u])swap(u,v);
int d = dep[u] - dep[v];
while(d) u = f[u][LG2[lowbit(d)]],d -= lowbit(d); //这里和树状数组那里很像。
if(u == v) return u;
for(int i = LOG-1; i >= 0; i--){
if(f[u][i]!=f[v][i]){
u = f[u][i],v = f[v][i];
}
}
return f[u][0];
}
}wk;
int main(){
scanf("%d%d%d",&n,&m,&s);
for(int i = 1, u, v; i < n; i++){
scanf("%d%d",&u,&v);
wk.add(u,v),wk.add(v,u);
}
wk.init();
for(int i = 1, u, v; i <= m; i++){
scanf("%d%d",&u,&v);
printf("%d\n",wk.lca(u,v));
}
return 0;
}