倍增求LCA

1.倍增是什么?
请看我的另一篇文章 RMQ
2.什么是LCA?
Least Common Ancestors:顾名思义,最近并且公共的祖先,如下图H和M的LCA是E。
在这里插入图片描述
(这个算法我也是看了好久,才有点顿悟)
思路:这个算法暴力就是从最底部一点一点向上跳,但这样是非常耗时的。而采取倍增来做,就减少了跳的步数。利用一个二维数组f[ i ][ j ]而他表示的是从i,向上跳2^j个单位,其中通过递归来更新初始化 f 数组,而其中就利用了动态规划,f[ i ][ j ] = f[ f[i][j -1]][j -1],这可以这样理解,从i向上跳 2^j 个单位 = 从i先跳 2^(j-1)单位,然后再跳 2^(j-1) 个单位,就相当于 2^j = 2^(j-1) + 2^(j-1)
下面代码一洛谷一道经典的模板题作为样例:洛谷LCA

#include <bits/stdc++.h>
using namespace std;
const int maxn = 5e5+10; 
int tot,n,m,s,to[2*maxn],head[2*maxn],next[2*maxn];
int f[maxn][30],d[maxn];
void add(int x,int y){		//链式前向星存储
	to[++tot] = y;next[tot] = head[x]; head[x] = tot;
}
void dfs(int u,int fa){
	d[u] = d[fa]+1;			//每递归一层,深度就要加一。
	for(int i = 1; (1<<i) <= d[u]; i++)
		f[u][i] = f[f[u][i-1]][i-1];	//动态转移方程,
	for(int i = head[u]; i ; i = next[i]){
		int v = to[i];
		if(v == fa)continue;	//只递归他的儿子节点,遇到父亲节点直接跳过,因为是无向图
		f[v][0] = u;		//f[v][0]表示从v向上跳2^0 = 1,也就是他的父节点
		dfs(v,u);
	}
}
int LCA(int a,int b){
	if(d[a] < d[b]) swap(a,b);	//强制定义a比b深度更深
	for(int i = 20; i >= 0; i--){		//在这里有三种做法,我感觉还是这种好理解
		if(d[f[a][i]] >= d[b]) a = f[a][i]; //先将a跳到b的高度
		if(a == b) return a;	//如果两个相等说明较高的b就是a与b的LCA
	}
	for(int i = 20; i >= 0; i--)
		if(f[a][i] != f[b][i])	//找到最后一个不相等的,那么他们中任意一个就是他们的LCA
			a = f[a][i],b = f[b][i];
	return f[a][0];	//也可以return f[b][0];
}
int main(){
	scanf("%d%d%d",&n,&m,&s);
	for(int i = 1; i <= (n-1); i++){
		int x,y;
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);	//无向图
	}
	dfs(s,0);
	while(m--){
		int a,b;
		scanf("%d%d",&a,&b);
		printf("%d\n",LCA(a,b));
	}
	return 0;
} 

第二个处理跳到相同高度的方法:x = fa[x][lg[depth[x]-depth[y]] - 1];

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5+10;
struct zzz {
    int t, nex;
}e[maxn << 1]; int head[maxn], tot;
void add(int x, int y) {
	e[++tot].t = y;
	e[tot].nex = head[x];
	head[x] = tot;
}
int depth[maxn], fa[maxn][22], lg[maxn];
void dfs(int now, int fath) {  //now表示当前节点,fath表示它的父亲节点
	fa[now][0] = fath; 
	depth[now] = depth[fath] + 1;
	for(int i = 1; i <= lg[depth[now]]; ++i)
    	fa[now][i] = fa[fa[now][i-1]][i-1]; //这个转移可以说是算法的核心之一
	//意思是now的2^i祖先等于now的2^(i-1)祖先的2^(i-1)祖先,2^i = 2^(i-1) + 2^(i-1)
	for(int i = head[now]; i; i = e[i].nex)
    	if(e[i].t != fath) dfs(e[i].t, now);
}
int LCA(int x, int y) {
	if(depth[x] < depth[y]) //用数学语言来说就是:不妨设x的深度 >= y的深度
		swap(x, y);
	while(depth[x] > depth[y])
		x = fa[x][lg[depth[x]-depth[y]] - 1]; //先跳到同一深度
	if(x == y)  //如果x是y的祖先,那他们的LCA肯定就是x了
		return x;
	for(int k = lg[depth[x]] - 1; k >= 0; --k) //不断向上跳(lg就是之前说的常数优化)
		if(fa[x][k] != fa[y][k])  //因为我们要跳到它们LCA的下面一层,所以它们肯定不相等,如果不相等就跳过去。
	    	x = fa[x][k], y = fa[y][k];
	return fa[x][0];  //返回父节点
}
int main() {
	int n, m, s; scanf("%d%d%d", &n, &m, &s);
	for(int i = 1; i <= n-1; ++i) {
		int x, y; scanf("%d%d", &x, &y);
		add(x, y); add(y, x);
	}
	for(int i = 1; i <= n; ++i) //预先算出log_2(i)+1的值,用的时候直接调用就可以了
		lg[i] = lg[i-1] + (1 << lg[i-1] == i);  //看不懂的可以手推一下
	dfs(s, 0);
	for(int i = 1; i <= m; ++i) {
		int x, y; scanf("%d%d",&x, &y);
		printf("%d\n", LCA(x, y));
	}
	return 0;
}

第三个处理跳到相同高度的方法:u = f[u][LG2[lowbit(d)]],d -= lowbit(d);

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 500010;

struct gra{			//链式前向星 
	int head[maxn],to[maxn<<1],nxt[maxn<<1],cnt;
	void add(int a,int b){
		nxt[++cnt] = head[a];
		head[a] = cnt;
		to[cnt] = b; 
	}
	void clear(int n){
		fill(head, head+1+n, 0),cnt = 0;
	}
};
const int LOG = 19;
int n,m,s;
struct LCA:public gra{
	int f[maxn][LOG],dep[maxn],LG2[maxn];
	void init(){
		dep[s] = 1,dfs(s);
		for(int i = 0; i <= LOG-1; i++)LG2[(1<<i)] = i;
	}
	void dfs(int x){
		for(int i = 1; i <= LOG-1; i++){
			f[x][i] = f[f[x][i-1]][i-1];
		}
		for(int i = head[x]; i ; i = nxt[i]){
			int u = to[i];
			if(u==f[x][0])continue;
			f[u][0] = x,dep[u] = dep[x] + 1;
			dfs(u);
		}
	}
	inline int lowbit(int x){return -x&x;}
	int lca(int u,int v){
		if(u == v) return u;
		if(dep[v] > dep[u])swap(u,v);
		int d = dep[u] - dep[v];
		while(d) u = f[u][LG2[lowbit(d)]],d -= lowbit(d);	//这里和树状数组那里很像。
		if(u == v) return u;
		for(int i = LOG-1; i >= 0; i--){
			if(f[u][i]!=f[v][i]){
				u = f[u][i],v = f[v][i];
			}
		}
		return f[u][0];
	}
}wk;

int main(){
	scanf("%d%d%d",&n,&m,&s);
	for(int i = 1, u, v; i < n; i++){
		scanf("%d%d",&u,&v);
		wk.add(u,v),wk.add(v,u);
	}
	wk.init();
	for(int i = 1, u, v; i <= m; i++){
		scanf("%d%d",&u,&v);
		printf("%d\n",wk.lca(u,v));
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值