1.倍增
找两个点的LCA,先让它们深度相同,然后倍增向上跳跃,跳到使他们的值不相同的最浅层的点,那么此点的上方即是LCA。
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#define in(x) scanf("%d",&x);
using namespace std;
int n,m,rt,d[500007],fa[500007][22];
int heade[1000007],nexte[1000007],cnt=0,to[1000007];
void build_tree(int x,int father)
{
    int k=log(d[x])/log(2);
    for(int j=1;j<=19;++j)
    fa[x][j]=fa[fa[x][j-1]][j-1];
    for(int i=heade[x];i;i=nexte[i])
    {
        int u=to[i];
        if(u!=father)
        {
            d[u]=d[x]+1;
            fa[u][0]=x;
            build_tree(u,x);
        }
    }
}
inline int read()
{
    int x=0,w=1;char ch=0;
    while(ch<'0'||ch>'9')
    {
    
 
                   
                   
                   
                   这篇博客介绍了如何使用倍增算法和Tarjan算法来解决C++中寻找两个节点的最近公共祖先(LCA)问题。首先通过使节点深度相等,然后利用倍增向上查找,找到使节点值不同的最浅层点作为LCA。此外,还提到了一种离线算法,结合并查集深搜,当两个点都被访问过时输出其father作为LCA。建议通过绘制图例进行模拟以加深理解。
这篇博客介绍了如何使用倍增算法和Tarjan算法来解决C++中寻找两个节点的最近公共祖先(LCA)问题。首先通过使节点深度相等,然后利用倍增向上查找,找到使节点值不同的最浅层点作为LCA。此外,还提到了一种离线算法,结合并查集深搜,当两个点都被访问过时输出其father作为LCA。建议通过绘制图例进行模拟以加深理解。
           最低0.47元/天 解锁文章
最低0.47元/天 解锁文章
                           
                       
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   553
					553
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            