整体二分

引入

我们看一道题:

给定一个长度为 n ( n ≤ 50000 ) n(n\leq 50000) n(n50000) 的数组 a 1 , a 2 , . . . , a n a_1 , a_2 , ... , a_n a1,a2,...,an q   ( q ≤ 10 , 000 ) q\ ( q \leq 10,000 ) q (q10,000) 次询问,每次询问:

  • Q Q Q i i i j j j k k k 表示区间 [ i , j ] [i,j] [i,j] 中第 k k k 小的数是多少,并输出这个数。
  • C C C i i i t t t 表示将第 i i i 个数改为 t t t

我们会发现这是一道主席树的题。

这道题很明显能用主席树来完成,但我们有其他更加简便的算法,于是我们来看看这个新的算法——整体二分。

思路

对于单个查询我们可以二分解决,但是查询往往是一系列的,这也就导致了时间过长,于是我们来想想如何解决。

我们还是用二分的思想来解决,于是我们可以将所有的操作(修改和查询)一起来二分。

每次二分都可以完成多次操作,所以就不会有同一个地方被多次查询(或修改)操作。

可以看下代码理解(上面题的,有注释):

struct node {
    int a, b, c, d, tp, sum;//tp记录当前是哪一种操作
    //若tp = 1,则是插入操作,a代表第几个数插入,b代表插入的值
    //若tp = 2,则是删除操作,a代表第几个数删除,b代表删除的值
    //若tp = 3,则是查询操作,a代表查询的左端点,b代表查询的右端点,c代表所求的k,d代表当前是第几次查询,sum代表若二分到l, r是,再a, b区间里面值域再1, l - 1的数的个数
} q[1000005], q1[1000005], q2[1000005];
void divide(int hd, int tl, int l, int r) {
    if (hd > tl || l == r) {//如果我们现在这个二分里面没有任何操作或者已经无法二分了
        for (int i = hd; i <= tl; i++)
            if (q[i].tp == 3)
                ans[q[i].d] = l;//这说明当前的答案已经找到
        return ;
    }
    int mid = (l + r) / 2;
    for (int i = hd; i <= tl; i++) {//将每个操作二分
        if (q[i].tp == 1 && q[i].b <= mid)
            add(q[i].a, 1);//我们用树状数组维护值域为l, mid的数的个数
        if (q[i].tp == 2 && q[i].b <= mid)
            add(q[i].a, -1);
        if (q[i].tp == 3)
            tmp[i] = find(q[i].b) - find(q[i].a - 1);//这里是判断再查询的区间里面有多少个值域在l, mid的数
    }
    for (int i = hd; i <= tl; i++) {//清空树状数组,注意不能全部清空,要不会TLE
        if (q[i].tp == 1 && q[i].b <= mid)
            add(q[i].a, -1);
        if (q[i].tp == 2 && q[i].b <= mid)
            add(q[i].a, 1);
    }
    int cnt1 = 0, cnt2 = 0;
    for (int i = hd; i <= tl; i++) {
        if (q[i].tp == 3) {
            if (q[i].sum + tmp[i] < q[i].c)//如果我们发现值域为1, mid的个数要比我们需要的少,我们就将它放入值域为mid + 1, r里面继续二分
                q2[++cnt2] = q[i], q2[cnt2].sum += tmp[i];
            else//否则就放到l, mid里面二分
                q1[++cnt1] = q[i];
        }
        else {
            if (q[i].b <= mid)//如果这个修改操作是在l, mid的区间里的,那就放在l, mid里面二分
                q1[++cnt1] = q[i];
            else//否则就放到mid + 1, r里面二分
                q2[++cnt2] = q[i];
        }
    }
    for (int i = hd; i < hd + cnt1; i++)
        q[i] = q1[i - hd + 1];
    for (int i = hd + cnt1; i < hd + cnt1 + cnt2; i++)
        q[i] = q2[i - hd - cnt1 + 1];
    //我们将操作分为两组
    divide(hd, hd + cnt1 - 1, l, mid);
    divide(hd + cnt1, tl, mid + 1, r);
}
int main() {
    scanf("%d%d", &n, &Q);
    for (int i = 1; i <= n; i++)
        scanf("%d", &num[i]),
        ++cnt, q[cnt].a = i, q[cnt].b = num[i], q[cnt].tp = 1;//这里是插入操作
    for (int i = 1, a, b, c; i <= Q; i++) {
        if (in() == 'Q')
            scanf("%d%d%d", &a, &b, &c),
            ++cnt, q[cnt].a = a, q[cnt].b = b, q[cnt].c = c,
            q[cnt].d = ++qcnt, q[cnt].tp = 3;
        else {
            scanf("%d%d", &a, &b);
            ++cnt, q[cnt].a = a, q[cnt].b = num[a], q[cnt].tp = 2;
            ++cnt, q[cnt].a = a, q[cnt].b = b, q[cnt].tp = 1;//我们把修改操作改成删除和插入操作
            num[a] = b;
        }
    }
    divide(1, cnt, 0, 1e9);
    for (int i = 1; i <= qcnt; i++)
        printf("%d\n", ans[i]);
    return 0;
}

其实二分答案的核心就是我们要尽量少作重复的二分,把每一次修改操作和查询操作都放在一起二分,以减少重复的二分次数。

例题

  • 6
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值