在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数.
例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:
Input
输入数据由多行组成,每行包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0<n<=50)。
Output
对于每个测试实例,请输出铺放方案的总数,每个实例的输出占一行。
Sample Input
1
3
2
Sample Output
1
3
解题思路:
递推表达式:dp[i]=dp[i-1]+dp[i-2]。
dp[i-1]为铺满2*(n-1)网格的方案数(既然前面的2*(n-1)的网格一已经铺满,那么最后一个只能是竖着放)。
dp[i-2]为铺满2*(n-2)网格的方案数(如果前面的2*(n-2)的网格已经铺满,那么最后的只能是横着放,否则会重复).
防止数据太大,打表。
#include<stdio.h>
long long int dp[55];
int main()
{
long long int i,n,m;
dp[1] = 1;
dp[2] = 2;
for(i = 3; i <= 55; i++)
{
dp[i] = dp[i-1] + dp[i-2];
}
while(scanf("%lld",&m)!=EOF)
{
printf("%lld\n",dp[m]);
}
return 0;
}