特征方程

Characteristic Equation(特征方程

  • 前置芝士——Eigenvalues(特征值

Eigenvalue

我们将满足 x x x M v = x v Mv = xv Mv=xv的向量称为矩阵 M M M的特征向量
x x x称为 v v v对应的 M M M的特征值 v v v称为与 x x x对应的特征向量)。

方程 d e t ( M − x I ) = 0 det(M-xI)= 0 detMxI=0 是给定 M M M 的变量 x x x 中的多项式方程(polynomials无处不在。 它被称为矩阵 M M M特征方程。可以对其求解以找到 M M M的特征值 x x x

表示为 T r ( M ) Tr(M) Tr(M) 的方阵M的迹线是其对角元素的总和。

Characteristic Equation!

特征方程就是求解以找到矩阵特征值的方程博主中文太差 ,看不懂的来看原句:which is solved to find a matrix’s eigenvalues.

对于一般的 k ∗ k k*k kk矩阵A,变量 λ λ λ中的特征方程定义为

d e t ( A − λ I ) = 0 det(A-λ I)= 0 detAλI=0 (I是单位矩阵,det(B)是矩阵B的行列式

明确写出A:

在这里插入图片描述

所以它的特征方程是:
在这里插入图片描述
我爱定义,定义爱我

韦达定理:咕咕咕(

评论 3 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页

打赏作者

elllllli

肯定没有人的(我就玩玩哈哈哈

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值