Java基本类型
Java 中有 8 种基本数据类型,分别为:
- 6 种数字类型:
- 4 种整数型: byte 、 short 、 int 、 long
- 2 种浮点型: float 、 double
- 1 种字符类型: char
- 1 种布尔型: boolean
这 8 种基本数据类型的默认值以及所占空间的大小如下:
基本类型 | 位数 | 字节 | 默认值 | 取值范围 |
---|---|---|---|---|
byte | 8 | 1 | 0 | -128~127 |
short | 16 | 2 | 0 | -32768(-2^15) ~ 32767(2^15 - 1) |
int | 32 | 4 | 0 | -2147483648 ~ 2147483647 |
long | 64 | 8 | 0L | -9223372036854775808(-2^63) ~9223372036854775807(2^63 -1) |
char | 16 | 2 | ‘u0000’ | 0 ~ 65535(2^16 - 1) |
float | 32 | 4 | 0f | 1.4E-45 ~ 3.4028235E38 |
double | 64 | 8 | 0d | 4.9E-324 ~ 1.7976931348623157E308 |
boolean | 1 | false | true、flase |
可以看到,像 byte 、 short 、 int 、 long 能表示的最大正数都减 1 了。这是为什么呢?
这是因为在二进制补码表示法中,最高位是用来表示符号的(0 表示正数, 1 表示负数),其余位表示数值部分。所以,如果我们要表示最大的正数,我们需要把除了最高位之外的所有位都设为 1。如果我们再加 1,就会导致溢出,变成一个负数。
注意:
- Java 里使用 long 类型的数据一定要在数值后面加上 L,否则将作为整型解析。
- char a = ‘h’ char :单引号, String a = “hello” :双引号。
这八种基本类型都有对应的包装类分别为: Byte 、 Short 、 Integer 、 Long 、 Float 、Double 、 Character 、 Boolean 。
Java包装类型
这八种基本类型都有对应的包装类分别为: Byte 、 Short 、 Integer 、 Long 、 Float 、Double 、 Character 、 Boolean 。
基本类型和包装类型的区别?
- 用途:除了定义一些常量和局部变量之外,我们在其他地方比如方法参数、对象属性中很少会使用基本类型来定义变量。并且,包装类型可用于泛型,而基本类型不可以。
- 存储方式:基本数据类型的局部变量存放在 Java 虚拟机栈中的局部变量表中,基本数据类型的成员变量(未被 static 修饰 )存放在 Java 虚拟机的堆中。包装类型属于对象类型,我们知道几乎所有对象实例都存在于堆中。
- 占用空间:相比于包装类型(对象类型), 基本数据类型占用的空间往往非常小。
- 默认值:成员变量包装类型不赋值就是 null ,而基本类型有默认值且不是 null 。
- 比较方式:对于基本数据类型来说, == 比较的是值。对于包装数据类型来说, == 比较的是对象的内存地址。所有整型包装类对象之间值的比较,全部使用 equals() 方法。
为什么说是几乎所有对象实例都存在于堆中呢?
这是因为 HotSpot 虚拟机引入了 JIT 优化之后,会对对象进行逃逸分析,如果发现某一个对象并没有逃逸到方法外部,那么就可能通过标量替换来实现栈上分配,而避免堆上分配内存。
public class Test {
// 成员变量, 存放在堆中
int a = 10;
// 被 static 修饰, 也存放在堆中, 但属于类, 不属于对象
// JDK1.7 静态变量从永久代移动了 Java 堆中
static int b = 20;
public void method() {
// 局部变量, 存放在栈中
int c = 30;
static int d = 40; // 编译错误, 不能在方法中使用 static 修饰局部变量
}
}
Java缓存机制
Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。
Byte
,Short
,Integer
,Long
这 4 种包装类默认创建了数值 [-128,127] 的相应类型的缓存数据,Character
创建了数值在 [0,127] 范围的缓存数据,Boolean
直接返回 True
or False
。
Integer 缓存源码:
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
private static class IntegerCache {
static final int low = -128;
static final int high;
static {
// high value may be configured by property
int h = 127;
}
}
Character
缓存源码:
public static Character valueOf(char c) {
if (c <= 127) { // must cache
return CharacterCache.cache[(int)c];
}
return new Character(c);
}
private static class CharacterCache {
private CharacterCache(){}
static final Character cache[] = new Character[127 + 1];
static {
for (int i = 0; i < cache.length; i++)
cache[i] = new Character((char)i);
}
}
Boolean
缓存源码:
public static Boolean valueOf(boolean b) {
return (b ? TRUE : FALSE);
}
如果超出对应范围仍然会去创建新的对象,缓存的范围区间的大小只是在性能和资源之间的权衡。
两种浮点数类型的包装类 Float
,Double
并没有实现缓存机制。
Integer i1 = 33;
Integer i2 = 33;
System.out.println(i1 == i2);// 输出 true
Float i11 = 333f;
Float i22 = 333f;
System.out.println(i11 == i22);// 输出 false
Double i3 = 1.2;
Double i4 = 1.2;
System.out.println(i3 == i4);// 输出 false
下面我们来看一个问题:下面的代码的输出结果是 true
还是 false
呢?
Integer i1 = 40;
Integer i2 = new Integer(40);
System.out.println(i1==i2);
Integer i1=40
这一行代码会发生装箱,也就是说这行代码等价于 Integer i1=Integer.valueOf(40)
。因此,i1
直接使用的是缓存中的对象。而Integer i2 = new Integer(40)
会直接创建新的对象。
因此,答案是 false
。
记住:所有整型包装类对象之间值的比较,全部使用 equals 方法比较。
说明:对于Integer var = ? 在-128至127之间的赋值,Integer对象是在IntegerCache.cache产生,会复用已有对象,这个区间内的Integer值可以直接使用==进行判断,但是这个区间之外的所有数据,都会在堆上产生,并不会复用已有对象,这是一个大坑,推荐使用equals方法进行判断。
Java自动拆装箱
- 装箱:将基本类型用它们对应的引用类型包装起来;
- 拆箱:将包装类型转换为基本数据类型;
举例:
Integer i = 10; //装箱
int n = i; //拆箱
上面这两行代码对应的字节码为:
L1
LINENUMBER 8 L1
ALOAD 0
BIPUSH 10
INVOKESTATIC java/lang/Integer.valueOf (I)Ljava/lang/Integer;
PUTFIELD AutoBoxTest.i : Ljava/lang/Integer;
L2
LINENUMBER 9 L2
ALOAD 0
ALOAD 0
GETFIELD AutoBoxTest.i : Ljava/lang/Integer;
INVOKEVIRTUAL java/lang/Integer.intValue ()I
PUTFIELD AutoBoxTest.n : I
RETURN
从字节码中,我们发现装箱其实就是调用了 包装类的valueOf()
方法,拆箱其实就是调用了 xxxValue()
方法。
因此,
Integer i = 10
等价于Integer i = Integer.valueOf(10)
int n = i
等价于int n = i.intValue()
;
注意:如果频繁拆装箱的话,也会严重影响系统的性能。我们应该尽量避免不必要的拆装箱操作。
private static long sum() {
// 应该使用 long 而不是 Long
Long sum = 0L;
for (long i = 0; i <= Integer.MAX_VALUE; i++)
sum += i;
return sum;
}
超过 long 整型的数据应该如何表示?
基本数值类型都有一个表达范围,如果超过这个范围就会有数值溢出的风险。
在 Java 中,64 位 long 整型是最大的整数类型。
long l = Long.MAX_VALUE;
System.out.println(l + 1); // -9223372036854775808
System.out.println(l + 1 == Long.MIN_VALUE); // true
BigInteger 内部使用 int[] 数组来存储任意大小的整形数据。
相对于常规整数类型的运算来说,BigInteger 运算的效率会相对较低。
Java浮点数精度丢失
浮点数运算精度丢失代码演示:
float a = 2.0f - 1.9f;
float b = 1.8f - 1.7f;
System.out.println(a);// 0.100000024
System.out.println(b);// 0.099999905
System.out.println(a == b);// false
为什么会出现这个问题呢?
这个和计算机保存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制精确表示。
另外,float精度是6-7,能保证6位,一般7位;double精度是15~16,能保证15位,一般16位。
就比如说十进制下的 0.2 就没办法精确转换成二进制小数:
// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...
如何解决浮点数运算的精度丢失问题?
BigDecimal
BigDecimal
BigDecimal
可以实现对浮点数的运算,不会造成精度丢失。通常情况下,大部分需要浮点数精确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal
来做的。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
BigDecimal c = new BigDecimal("0.8");
BigDecimal x = a.subtract(b);
BigDecimal y = b.subtract(c);
System.out.println(x); /* 0.1 */
System.out.println(y); /* 0.1 */
System.out.println(Objects.equals(x, y)); /* true */
加减乘除
add
方法用于将两个 BigDecimal
对象相加,subtract
方法用于将两个 BigDecimal
对象相减。multiply
方法用于将两个 BigDecimal
对象相乘,divide
方法用于将两个 BigDecimal
对象相除。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
System.out.println(a.add(b));// 1.9
System.out.println(a.subtract(b));// 0.1
System.out.println(a.multiply(b));// 0.90
System.out.println(a.divide(b));// 无法除尽,抛出 ArithmeticException 异常
System.out.println(a.divide(b, 2, RoundingMode.HALF_UP));// 1.11,RoundingMode.HALF_UP:根据保留数字后一位 >=5 进行四舍五入。
大小比较
a.compareTo(b)
: 返回 -1 表示 a
小于 b
,0 表示 a
等于 b
, 1 表示 a
大于 b
。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
System.out.println(a.compareTo(b));// 1
保留几位小数
通过 setScale
方法设置保留几位小数以及保留规则。保留规则有挺多种,不需要记,IDEA 会提示。
BigDecimal m = new BigDecimal("1.255433");
BigDecimal n = m.setScale(3,RoundingMode.HALF_DOWN); //RoundingMode.HALF_DOWN:根据保留数字后一位 >5 进行五舍六入。
System.out.println(n);// 1.255
工具类
import java.math.BigDecimal;
import java.math.RoundingMode;
/**
* 简化BigDecimal计算的小工具类
*/
public class BigDecimalUtil {
/**
* 默认除法运算精度
*/
private static final int DEF_DIV_SCALE = 10;
private BigDecimalUtil() {
}
/**
* 提供精确的加法运算。
*
* @param v1 被加数
* @param v2 加数
* @return 两个参数的和
*/
public static double add(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.add(b2).doubleValue();
}
/**
* 提供精确的减法运算。
*
* @param v1 被减数
* @param v2 减数
* @return 两个参数的差
*/
public static double subtract(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.subtract(b2).doubleValue();
}
/**
* 提供精确的乘法运算。
*
* @param v1 被乘数
* @param v2 乘数
* @return 两个参数的积
*/
public static double multiply(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.multiply(b2).doubleValue();
}
/**
* 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到
* 小数点以后10位,以后的数字四舍五入。
*
* @param v1 被除数
* @param v2 除数
* @return 两个参数的商
*/
public static double divide(double v1, double v2) {
return divide(v1, v2, DEF_DIV_SCALE);
}
/**
* 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指
* 定精度,以后的数字四舍五入。
*
* @param v1 被除数
* @param v2 除数
* @param scale 表示表示需要精确到小数点以后几位。
* @return 两个参数的商
*/
public static double divide(double v1, double v2, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.divide(b2, scale, RoundingMode.HALF_EVEN).doubleValue();
}
/**
* 提供精确的小数位四舍五入处理。
*
* @param v 需要四舍五入的数字
* @param scale 小数点后保留几位
* @return 四舍五入后的结果
*/
public static double round(double v, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b = BigDecimal.valueOf(v);
BigDecimal one = new BigDecimal("1");
return b.divide(one, scale, RoundingMode.HALF_UP).doubleValue();
}
/**
* 提供精确的类型转换(Float)
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static float convertToFloat(double v) {
BigDecimal b = new BigDecimal(v);
return b.floatValue();
}
/**
* 提供精确的类型转换(Int)不进行四舍五入
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static int convertsToInt(double v) {
BigDecimal b = new BigDecimal(v);
return b.intValue();
}
/**
* 提供精确的类型转换(Long)
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static long convertsToLong(double v) {
BigDecimal b = new BigDecimal(v);
return b.longValue();
}
/**
* 返回两个数中大的一个值
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 返回两个数中大的一个值
*/
public static double returnMax(double v1, double v2) {
BigDecimal b1 = new BigDecimal(v1);
BigDecimal b2 = new BigDecimal(v2);
return b1.max(b2).doubleValue();
}
/**
* 返回两个数中小的一个值
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 返回两个数中小的一个值
*/
public static double returnMin(double v1, double v2) {
BigDecimal b1 = new BigDecimal(v1);
BigDecimal b2 = new BigDecimal(v2);
return b1.min(b2).doubleValue();
}
/**
* 精确对比两个数字
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 如果两个数一样则返回0,如果第一个数比第二个数大则返回1,反之返回-1
*/
public static int compareTo(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.compareTo(b2);
}
}