代码随想录算法训练营第42天 | 动态规划 背包理论基础 LeetCode416. 分割等和子集

该文介绍了如何使用动态规划解决LeetCode中的416题,即分割等和子集问题。文中提到的重点是背包问题的理论基础,包括一维数组的优化方法,强调从后往前遍历的重要性,并指出初始化状态在处理过程中是如何进行的。代码实现中,特别提到了dp递推公式的应用,以及如何计算目标和的过程中避免不必要的拆分。
摘要由CSDN通过智能技术生成

@代码随想录算法训练营第42天 | 动态规划 背包理论基础 LeetCode416. 分割等和子集

416. 分割等和子集

第一遍读题思考

重点在于背包问题的理论基础建议阅读以下两个链接。
背包问题理论基础,用二维数组入门
背包问题理论基础,用一维数组优化

代码随想录解法思路

一维数组注意需要从后往前遍历,先遍历物品,再遍历背包,相当于是在更新背包。这里的初始化直接包含在i=0的循环中了,相当于放入i=0的物体之前什么都没有放入。状态转移矩阵需要细品。

c++代码具体实现注意事项需要注意dp的递推公式,计算5的最大乘积的时候,用j拆分成j和5-j,为什么j不再拆分了?

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = accumulate(nums.begin(), nums.end(), 0);
        if(sum%2==1) return false;
        int target = sum/2;
        vector<int> dp(10001,0);
        for(int i=0;i<nums.size();i++)
            for(int j=target;j>=nums[i];j--)
        {
            dp[j] = max(dp[j], dp[j-nums[i]]+nums[i]);
        }
        if(dp[target] == target) return true;
        else return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值