HKUST:基于LLM的角色扮演agent综述

在这里插入图片描述
📖标题:The Oscars of AI Theater: A Survey on Role-Playing with Language Models
🌐来源:arXiv, 2407.11484

🛎️文章简介

本文主要调研了与LLM角色扮演相关的领域,并从多个方面进行了综合分析,不仅概述了当前的方法和挑战,还为未来提高角色扮演的深度和真实性的研究提出了途径。

📝重点思路

🔺数据获取

🔸目标:数据集是训练、分类和测试不同角色扮演代理最重要的先决条件。
🔸基于Persona:主要关注地域和性别等表面和常见属性,通常收集粗粒度的角色属性信息。
🔸基于Character:主要关注小说或叙事等语料库级别的背景材料,通常收集现实世界的典型个人或虚拟场景的取材。

🔺模型对齐

🔸模型:作为底层架构,决定了角色扮演场景中可实现的性能和复杂程度的下限,经历了非预训练模型、PLM和LLM三个阶段。
🔸对齐:角色扮演取决于语言模型与独特的角色相关信息的精确对齐,包括参数调优对齐(SFT、RLHF等)和参数冻结对齐(ICL、RAG等)

🔺代理架构

🔸记忆:记忆主要源自用户-代理交互和代理-代理交互,可以通过检索和压缩的方式做集成。
🔸规划:通常包括计划制定和计划反思两个阶段。
🔸行动:动作是事先规划、记忆利用和交互的结果,工具使用非常重要。

🔺模型评估

🔸维度:包括对话质量、角色人物一致、角色行为一致和角色思想一致。
🔸方式:包括测试集答案评分、人类作为评估器、模型作为评估器。

🔎分析总结

🔸挑战包括制定具体的评估指标、高效的记忆管理、确保角色对齐、维护安全和促进终身学习。
🔸解决这些问题需要采取综合方法,将技术创新与严格遵守道德标准相结合。

附录

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值