哈工大:LLM指令调优去偏见框架

在这里插入图片描述

📖标题:Information Gain-Guided Causal Intervention for Autonomous Debiasing Large Language Models
🌐来源:arXiv, 2504.12898

🌟摘要

🔸尽管取得了重大进展,但最近的研究表明,当前的大型语言模型 (LLM) 仍然可以捕获数据集偏差并在推理过程中使用它们,导致 LLM 的泛化能力较差。然而,由于数据集偏差的多样性和基于上下文学习的偏差抑制的性质不足,以往基于先验知识的去偏方法和基于上下文学习的自动去偏方法的有效性是有限的。
🔸为了应对这些挑战,我们探索了因果机制与信息论的结合,并提出了一个信息增益引导的因果干预去偏 (IGCIDB) 框架。该框架首先利用信息增益引导的因果干预方法自动自主地平衡指令调优数据集的分布。随后,它采用标准的监督微调过程在去偏数据集上训练 LLM。
🔸实验结果表明,IGCIDB可以有效地对LLM进行去偏,以提高其在不同任务中的泛化能力。

🛎️文章简介

🔸研究问题:大语言模型(LLM)在训练过程中从指令调优数据集中会学习到偏见。
🔸主要贡献:论文提出了一种信息增益引导的因果干预去偏见框架(IGCIDB),旨在消除指令调优数据集中的偏见特征,从而提高模型的泛化能力。

📝重点思路

🔸通过因果引导的主动学习(CAL)方法自动识别指令调优数据集中的偏见特征。
🔸使用信息增益理论确保偏见特征对预测答案不提供额外信息,达到去偏见的目标。
🔸采用因果干预的方式重写数据集,以修改偏见特征与答案之间的关系,从而消除它们的相关性。
🔸在去偏见的数据集上,通过标准的监督微调过程对大型语言模型进行微调。

🔎分析总结

🔸实验结果表明,IGCIDB方法能有效减少大型语言模型对偏见特征的依赖,提升其在转移测试集上的表现。
🔸与传统的监督微调方法相比,IGCIDB在保持模型的通用能力的同时,显著增强了模型的泛化能力。
🔸通过挑战性测试集评估,证明了IGCIDB方法在应对数据集偏见方面的鲁棒性和有效性。

💡个人观点

论文的核心是结合信息增益和因果干预机制,自动识别并修正数据集中的偏见特征。

🧩附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值