人大:LLM内部一致性和自我反馈综述

在这里插入图片描述

📖标题:Internal Consistency and Self-Feedback in Large Language Models: A Survey
🌐来源:arXiv, 2407.14507

🛎️文章简介

论文从大语言模型(LLM)表现出的推理缺陷或生成幻觉内容,提出了内部一致性的理论框架,并从自我反馈的角度来分析如何增强内部一致性,最后总结了相关的评估基准和探索方向。

📝重点思路

🔺背景问题

🔸现状:当前的模型难以产生一致的响应,面对分布外问题时表现出不合逻辑的推理,并且在对自身能力边界认识不足的情况下表现出过度的自信。
🔸分析:三个维度反映内部一致性 ①表面层体现出对相同的查询产生不一致的响应 ②中间层是由于解码过程中的随机采样 ③内部层是潜在状态下的特定注意头与回答忠实度相关性。
🔸缓解:扩大模型规模是最直接的方法,但没有从根本解决问题,模仿人类思维过程让模型自我评估是提高一致性的思路。

🔺内部一致性

🔸按照三个维度定义:响应一致性,解码一致性,潜在一致性
🔸实证研究:即使LL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值