adobe:LLM高效、稳健的RAG框架DIVA

在这里插入图片描述

📖标题:Diversify-verify-adapt: Efficient and Robust Retrieval-Augmented Ambiguous Question Answering
🌐来源:arXiv, 2409.02361

摘要

🔸检索增强生成(RAG)框架通过检索涵盖所有合理解释的段落并基于这些段落生成全面的响应,解决了QA系统中用户查询中的歧义问题。然而,我们的初步研究表明,单一的检索过程往往会导致低质量的结果,因为检索到的段落往往无法捕捉到所有合理的解释。尽管已经提出了迭代RAG方法来解决这个问题,但它以显著降低效率为代价。
🔸为了解决这些问题,我们提出了多样化验证-适应(DIVA)框架。DIVA首先将检索到的段落多样化,以包含不同的解释。随后,DIVA验证了段落的质量,并根据其质量调整了最合适的方法。这种方法通过处理模糊问题中的低质量检索问题来提高QA系统的准确性和鲁棒性,同时提高效率。

🛎️文章简介

🔸研究问题:现有检索增强生成(RAG)框架,单一检索过程质量较低,迭代检索效果不高。
🔸主要贡献:论文提出了一个名为DIVA的高效且鲁棒的RAG框架,通过检索多样化(RD&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值