📖标题:Diversify-verify-adapt: Efficient and Robust Retrieval-Augmented Ambiguous Question Answering
🌐来源:arXiv, 2409.02361
摘要
🔸检索增强生成(RAG)框架通过检索涵盖所有合理解释的段落并基于这些段落生成全面的响应,解决了QA系统中用户查询中的歧义问题。然而,我们的初步研究表明,单一的检索过程往往会导致低质量的结果,因为检索到的段落往往无法捕捉到所有合理的解释。尽管已经提出了迭代RAG方法来解决这个问题,但它以显著降低效率为代价。
🔸为了解决这些问题,我们提出了多样化验证-适应(DIVA)框架。DIVA首先将检索到的段落多样化,以包含不同的解释。随后,DIVA验证了段落的质量,并根据其质量调整了最合适的方法。这种方法通过处理模糊问题中的低质量检索问题来提高QA系统的准确性和鲁棒性,同时提高效率。
🛎️文章简介
🔸研究问题:现有检索增强生成(RAG)框架,单一检索过程质量较低,迭代检索效果不高。
🔸主要贡献:论文提出了一个名为DIVA的高效且鲁棒的RAG框架,通过检索多样化(RD&#x