📖标题:Finetuning Language Models to Emit Linguistic Expressions of Uncertainty
🌐来源:arXiv, 2409.12180
摘要
🔸大型语言模型(LLMs)越来越多地用于信息查询和决策任务。尽管它们具有广泛的实用性,但LLMs往往会生成与现实事实相冲突的信息,并且它们具有说服力的风格会使这些不准确性看起来自信和有说服力。因此,最终用户往往难以始终将LLMs表达的自信与其预测的准确性相一致,通常会导致对所有输出的盲目信任或完全忽视其可靠性。
🔸在这项工作中,我们探索了在不确定性增强预测上进行监督微调的方法,以开发能够生成语言表达不确定性的模型。具体而言,我们测量了预训练模型的校准度,然后微调语言模型以生成校准的语言表达式。
🔸通过对各种问答数据集的实验,我们证明LLMs在评估其预测方面具有良好的校准性,并且基于模型自身置信度的监督微调可以产生校准的不确定性表达式,特别是对于单一主张的答案。
🛎️文章简介
🔸研究问题:如何训练大语言模型(LLM)生成准确的表达不确定性的语言形式?
🔸主要贡献:论文提出了一种通过监督微调(SFT)