腾讯:LLM自监督偏好优化框架SPO

在这里插入图片描述

📖标题:Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness
🌐来源:arXiv, 2409.17791

摘要

🔸最近,人们对用人类反馈(RLHF)方法代替大型语言模型(LLM)的强化学习中的奖励模型产生了浓厚的兴趣,如直接偏好优化(DPO)及其变体。这些方法通常在成对样本上使用二进制交叉熵机制,即分别基于首选或不首选响应最小化和最大化损失。然而,虽然这种训练策略省略了奖励模型,但它也忽略了不同反应中不同的偏好程度。
🔸我们假设这是阻碍LLM充分理解人类偏好的关键因素。为了解决这个问题,我们提出了一种新的自监督偏好优化(SPO)框架,该框架将自监督偏好度损失与对齐损失相结合,从而帮助LLM提高理解偏好度的能力。
🔸在两个广泛使用的不同任务的数据集上进行了广泛的实验。结果表明,SPO可以与现有的偏好优化方法无缝集成,并显著提高其性能,以实现最先进的性能。我们还进行了详细的分析,以提供对SPO的全面见解,从而验证其有效性。该代码可在以下网址获得https://github.com/l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值