📖标题:Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness
🌐来源:arXiv, 2409.17791
摘要
🔸最近,人们对用人类反馈(RLHF)方法代替大型语言模型(LLM)的强化学习中的奖励模型产生了浓厚的兴趣,如直接偏好优化(DPO)及其变体。这些方法通常在成对样本上使用二进制交叉熵机制,即分别基于首选或不首选响应最小化和最大化损失。然而,虽然这种训练策略省略了奖励模型,但它也忽略了不同反应中不同的偏好程度。
🔸我们假设这是阻碍LLM充分理解人类偏好的关键因素。为了解决这个问题,我们提出了一种新的自监督偏好优化(SPO)框架,该框架将自监督偏好度损失与对齐损失相结合,从而帮助LLM提高理解偏好度的能力。
🔸在两个广泛使用的不同任务的数据集上进行了广泛的实验。结果表明,SPO可以与现有的偏好优化方法无缝集成,并显著提高其性能,以实现最先进的性能。我们还进行了详细的分析,以提供对SPO的全面见解,从而验证其有效性。该代码可在以下网址获得https://github.com/l