北大:LLM物理推理基准PHYBench

在这里插入图片描述

📖标题:PHYBench: Holistic Evaluation of Physical Perception and Reasoning in Large Language Models
🌐来源:arXiv, 2504.16074

🌟摘要

🔸我们介绍PHYBench,这是一种新颖的高质量基准测试,旨在评估物理环境中大型语言模型(LLM)的推理能力。PHYBench由500个基于现实世界物理场景的精心策划的物理问题组成,旨在评估模型理解和推理现实物理过程的能力。该基准涵盖了力学、电磁学、热力学、光学、现代物理和高级物理,涵盖了从高中练习到本科问题和物理奥林匹克挑战的难度级别。
🔸此外,我们提出了表达式编辑距离(EED)评分,这是一种基于数学表达式之间编辑距离的新型评估指标,它有效地捕捉了模型推理过程和结果中的差异,超越了传统的二进制评分方法。
🔸我们在PHYBench上评估了各种LLM,并将其性能与人类专家进行了比较。我们的研究结果表明,即使是最先进的推理模型也明显落后于人类专家,这突显了它们的局限性以及在复杂的物理推理场景中改进的必要性。我们的基准测试结果和数据集可在以下网址公开获取https://phybench-official.github.io/phybench-demo/ .

🛎️文章简介

🔸研究问题:当前大语言模型(LLM)在复杂物理推理能力评估中存在不足。
🔸主要贡献:论文提出了名为PHYBench的基准,专门设计用于评估模型在物理上下文中的推理能力,并引入了新的评价指标EED Score。

📝重点思路

🔸设计PHYBench基准,包含500个高质量的物理问题,涵盖多个物理领域和不同难度等级。
🔸采用EED Score作为自动化评估指标,通过表达式树和编辑距离来评估模型生成的数学表达式的相似性。
🔸通过与人类物理专家的表现进行比较,建立人类基线,以更好地理解模型的推理能力。
🔸问题的设计聚焦于真实的物理场景,要求模型逐步推理和应用物理法则。

🔎分析总结

🔸论文结果显示,当前最先进的语言模型在PHYBench上的表现明显低于人类专家,最高准确率为36.9%,而人类基线为61.9%。
🔸通过EED Score的使用,能够更细致地评估模型的推理能力,显示出模型在物理感知和推理方面的显著不足。
🔸实验表明,PHYBench能够有效区分模型在不同物理领域中的表现,揭示其在空间推理和复杂过程分析中的能力差异。
🔸论文中对模型的错误分析表明,当前模型在长链推理和符号操作方面仍然面临重大挑战。

💡个人观点

论文的创新点在于提出了一个系统化的、针对物理推理的评估框架PHYBench,填补了现有基准在真实世界物理情境下评估模型能力的空白。

🧩附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### Video-LLaVA介绍 Video-LLaVA是由北京大学元宇宙创新实验室团队开发的一个视频推理和语言理解框架[^2]。此框架利用最新的深度学习技术以及自然语言处理算法,提供给用户一种高效且精准的方式来理解和生成视频描述。 该模型代表了一个重要的进步,在于它成功地解决了传统方法中存在的一个问题——即将图像和视频编码至独立的特征空间内,造成两者间的一致性缺失。通过将视觉表示统一到语言特征空间中,Video-LLaVA实现了基础大型语言模型(LLM)向大视觉语言模型(LVLM)的成功转型,并展示了卓越的表现力。具体来说,Video-LLaVA不仅跨越五个图像问答数据集和四个图像基准工具包中的九个图像基准测试取得了优异的成绩;而且在诸如MSRVTT、MSVD等多个知名的数据集上也超越了其他同类产品,比如相较于Video-ChatGPT而言,其表现分别提高了5.8%、9.9%不等[^3]。 ### 项目地址 项目的官方GitHub仓库位于[Pku-YuanGroup/Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA),这里可以找到更多有关该项目的技术细节和发展动态[^1]。 ### 使用方法概述 为了使用Video-LLaVA,建议按照如下指南操作: #### 安装依赖库 首先确保安装必要的Python环境和其他依赖项。可以通过pip命令来完成这些软件包的安装: ```bash pip install -r requirements.txt ``` #### 数据准备 准备好用于训练或评估的数据集。对于特定的任务类型(如视频分类),可能还需要额外下载预处理过的数据文件。 #### 运行示例脚本 查看`examples/`目录下的各种样例程序,从中挑选适合自己的应用场景并运行相应的Python脚本来启动实验过程。例如执行以下指令可尝试简单的预测任务: ```python from video_llava import predict_video_description video_path = "path/to/video.mp4" description = predict_video_description(video_path) print(f"The predicted description is {description}.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值