北大:交互式开放世界评估LLM情境推理

在这里插入图片描述

📖标题:Mars: Situated Inductive Reasoning in an Open-World Environment
🌐来源:arXiv, 2410.08126

摘要

🔸在海量语料库上训练的大型语言模型(LLMs)在知识密集型任务中取得了显著成功。然而,它们中的大多数都依赖于预先存储的知识。从特定环境中归纳出新的一般知识,并用获得的知识进行推理——情境归纳推理,对机器智能来说是至关重要且具有挑战性的。
🔸在这篇论文中,我们设计了火星(Mars),一个为情境归纳推理设计的交互式环境。它通过修改地形、生存设置和任务依赖性,同时遵循某些原则,引入了反常识游戏机制。在火星上,智能体需要与周围环境积极互动,得出有用的规则,并在特定环境中执行决策任务。
🔸我们对各种基于RL和基于LLM的方法进行了实验,发现它们都在这个具有挑战性的情境归纳推理基准上苦苦挣扎。此外,我们探索了“从反馈中归纳”,在那里我们指导代理从历史轨迹中进行归纳推理。卓越的性能突显了归纳推理在火星上的重要性。通过火星,我们的目标是激发情境归纳推理的进步,并为开发能够以自适应和上下文敏感的方式进行推理的下一代人工智能系统奠定基础。详见https://mars

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值