📖标题:ColaCare: Enhancing Electronic Health Record Modeling through Large Language Model-Driven Multi-Agent Collaboration
🌐来源:arXiv, 2410.02551
摘要
🔸我们介绍了ColaCare,这是一个通过大型语言模型(LLM)驱动的多代理协作来增强电子健康记录(EHR)建模的框架。我们的方法将特定领域的专家模型与LLM无缝集成,以弥合结构化EHR数据和基于文本的推理之间的差距。受临床咨询的启发,ColaCare采用了两种类型的代理:DoctorAgent和MetaAgent,它们协同分析患者数据。专家模型从数值EHR数据中处理和生成预测,而LLM代理在协作咨询框架内生成推理参考和决策报告。我们还将默克诊断和治疗手册(MSD)医疗指南纳入检索增强生成(RAG)模块,以获得权威证据支持。
🔸在四个不同的EHR数据集上进行的广泛实验表明,ColaCare在死亡率预测任务中表现出色,突显了其彻底改变临床决策支持系统和推进个性化精准医疗的潜力。代码、完整的提示模板、更多案例研究等可通过匿名链接公开获取:https://colacare.netlify.a