清华:LLM的密度缩放定律

在这里插入图片描述

📖标题:Densing Law of LLMs
🌐来源:arXiv, 2412.04315

🌟摘要

🔸大型语言模型(LLMs)已经成为人工智能的一个里程碑,随着模型大小的增加,它们的性能可以提高。然而,这种扩展给训练和推理效率带来了巨大挑战,特别是在资源受限的环境中部署LLM,并且扩展趋势变得越来越不可持续。
🔸本文介绍了“容量密度”的概念,作为评估不同尺度下LLM质量的新指标,并描述了LLM在有效性和效率方面的趋势。为了计算给定目标LLM的容量密度,我们首先引入一组参考模型,并制定一个标度定律,根据这些参考模型的参数大小预测其下游性能。然后,我们将目标LLM的有效参数大小定义为参考模型实现等效性能所需的参数大小,并将容量密度形式化为有效参数大小与目标LLM实际参数大小的比率。容量密度为评估模型的有效性和效率提供了一个统一的框架。
🔸我们对最近开源基础LLM的进一步分析揭示了一个经验定律(Densing Law),即LLM的容量密度随时间呈指数增长。更具体地说,使用一些广泛使用的基准进行评估,LLM的容量密度大约每三个月翻一番。该定律为指导未来LLM的发展提供了新的视角,强调了提高容量密度的重要性,以最小的计算开销实现最佳结果。

🛎️文章简介

🔸研究问题:如何在不显著增加计算资源的情况下,提高大型语言模型(LLM)的效率和性能?
🔸主要贡献:论文提出了“容量密度”的概念,并发现了LLM的密度呈指数增长的趋势,命名为“Densing Law”。

📝重点思路

🔸密度定义:首先定义了LLM的密度,即有效参数大小与实际参数大小的比率。
🔸密度评估:通过训练一系列不同规模的参考模型,评估其密度。
🔸密度拟合:通过损失估计(参数大小与语言模型损失之间的关系)和性能估计(根据测试集上的损失来预测下游任务的性能)两个步骤,使用线性回归方法,拟合下游任务性能与参数大小之间的关系。

🔎分析总结

🔸LLM的密度呈指数增长趋势,密度每三个月翻一番。
🔸现有的模型压缩方法(如剪枝和蒸馏)通常不能提高压缩模型的密度。
🔸更好的性能并不总是意味着更高的密度,大模型在计算资源和预训练数据规模受限时可能不是最优的。
🔸自ChatGPT发布以来,LLM密度的增长速度显著加快,增长速率提高了50%。
🔸密度增长加速了推理成本的指数下降,即在相同性能下,模型的实际参数大小和计算成本都在减少。

💡个人观点

论文的创新点在于提出了“容量密度”这一新的评估指标,并分析了LLM的“投产比”趋势。

🧩附录

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值