剑桥:LLM长上下文信息线索评估

在这里插入图片描述

📖标题:Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
🌐来源:arXiv, 2411.05000

🌟摘要

🔸随着大型语言模型(LLM)的上下文限制的增加,可能的应用程序和下游函数的范围也在扩大。在许多现实世界的任务中,决策取决于分散在通常包含无关信息的不同文档集合中的细节。长上下文LLM似乎非常适合这种复杂的信息检索和推理形式,传统上证明这种形式既昂贵又耗时。然而,尽管近年来较长上下文模型的发展取得了快速进展,但我们对LLM如何有效地使用其上下文的理解并没有跟上步伐。
🔸为了解决这个问题,我们进行了一系列检索实验,旨在评估17个领先的LLM的能力,例如它们通过上下文窗口跟踪信息线索的能力。引人注目的是,我们发现许多模型都是非常线程安全的:能够同时跟踪多个线程,而不会显著降低性能。尽管如此,对于许多模型,我们发现有效上下文限制明显短于支持的上下文长度,随着上下文窗口的增长,准确性会降低。我们的研究还强调了一个重要观点,即不应直接比较不同标记器的标记计数——它们通常对应于数量相差很大的书面字符。我们发布了我们的代码和长上下文实验数据。详见https://needle-threading.github.io/

🛎️文章简介

🔸研究问题:如何评估大语言模型(LLM)在处理长上下文中的信息检索能力,特别是在复杂的线程跟踪任务下的表现?
🔸主要贡献:论文引入了具有挑战性的多步骤检索任务,评估了17种领先的LLM在这些任务上的表现,并提出了一种任务特定的有效上下文限制度量。

📝重点思路

🔸设计一系列抽象的检索任务,利用合成生成的数据,避免了昂贵的问答标注和注释。
🔸实验涵盖了单针、多个针、条件针、线程和多线程检索任务,分析不同上下文长度对模型性能的影响。
🔸在不同的上下文大小(最多900k tokens)上进行实验,评估模型在长上下文中的表现。
🔸使用字符串序列化的JSON对象作为实验数据,确保了实验的高质量和可控性。
🔸提出了一种任务特定的有效上下文限制指标,以更好地评估模型的实际上下文处理能力。

🔎分析总结

🔸在较长上下文长度下,大多数模型的检索精度降低,特别是在上下文的中间部分。
🔸对于条件针任务,针的聚类显著提高了检索性能,特别是在随机放置的情况下。
🔸模型在跟踪多个线程方面表现出色,且大多数模型在前向线程上的准确性高于后向线程。
🔸随着上下文长度的增加,模型的有效上下文长度显著低于其理论上限。

💡个人观点

论文的创新点在于提出了一种基于任务的有效上下文限制度量,同时引入了多线程检索任务以挑战当前的LLM能力。

🧩附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值