📖标题:M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding
🌐来源:arXiv, 2411.04952
🌟摘要
🔸文档可视化问答(DocVQA)管道用于回答文档中的问题,具有广泛的应用。现有的方法侧重于使用多模态语言模型(MLM)处理单页文档,或者依赖于使用光学字符识别(OCR)等文本提取工具的基于文本的检索增强生成(RAG)。然而,在现实世界中应用这些方法存在困难:(a)问题通常需要跨不同页面或文档的信息,而传销无法处理许多长文档;(b) 文档通常在图形等视觉元素中包含重要信息,但文本提取工具会忽略它们。
🔸我们介绍了M3DOCRAG,这是一种新颖的多模态RAG框架,可以灵活地适应各种文档上下文(封闭域和开放域)、问题跳(单跳和多跳)和证据模式(文本、图表、图形等)。M3DOCRAG使用多模式检索器和MLM查找相关文档并回答问题,因此它可以有效地处理单个或多个文档,同时保留视觉信息。由于之前的DocVQA数据集在特定文档的背景下提出问题,我们还提出了M3DOCVQA