彭博社:多模态文档理解框架M3DocRAG

在这里插入图片描述

📖标题:M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding
🌐来源:arXiv, 2411.04952

🌟摘要

🔸文档可视化问答(DocVQA)管道用于回答文档中的问题,具有广泛的应用。现有的方法侧重于使用多模态语言模型(MLM)处理单页文档,或者依赖于使用光学字符识别(OCR)等文本提取工具的基于文本的检索增强生成(RAG)。然而,在现实世界中应用这些方法存在困难:(a)问题通常需要跨不同页面或文档的信息,而传销无法处理许多长文档;(b) 文档通常在图形等视觉元素中包含重要信息,但文本提取工具会忽略它们。
🔸我们介绍了M3DOCRAG,这是一种新颖的多模态RAG框架,可以灵活地适应各种文档上下文(封闭域和开放域)、问题跳(单跳和多跳)和证据模式(文本、图表、图形等)。M3DOCRAG使用多模式检索器和MLM查找相关文档并回答问题,因此它可以有效地处理单个或多个文档,同时保留视觉信息。由于之前的DocVQA数据集在特定文档的背景下提出问题,我们还提出了M3DOCVQA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值