📖标题:Fourier Position Embedding: Enhancing Attention’s Periodic Extension for Length Generalization
🌐来源:arXiv, 2412.17739
🌟摘要
🔸通过改进旋转位置嵌入(RoPE)来扩展语言模型(LM)的上下文长度已成为一种趋势。虽然现有的研究主要解决了RoPE在注意力机制中的局限性,但本文对LM的几乎所有部分进行了分析,揭示了它们对基于RoPE的注意力长度泛化的不利影响。利用离散信号处理理论,我们证明RoPE通过隐式实现非均匀离散傅里叶变换来实现周期性注意力。然而,这种周期性受到以下因素造成的光谱损伤的破坏:1)注意力之外的线性层和激活函数;2) 时域截断带来的训练不足的频率分量。
🔸基于我们的观察,我们提出了模糊位置嵌入(FoPE),它增强了注意力的频域特性,以提高其周期性扩展和长度泛化能力。FoPE构造傅里叶级数并将破坏性频率分量归零,提高了模型对频谱损伤的鲁棒性。
🔸跨不同模型尺度的实验表明,与RoPE和ALiBi相比,在不同的上下文窗口内,FoPE可以在大海捞针任务中保持更稳定的困惑度和更一致的准确性。一些分析和消融为我们的方法和理论建模提供了进一步的支持。详见