📖标题:Mitigating Lost-in-Retrieval Problems in Retrieval Augmented Multi-Hop Question Answering
🌐来源:arXiv, 2502.14245
🌟摘要
🔸在本文中,我们发现了检索增强多跳问答(QA)中的一个关键问题“检索丢失”:LLM的子问题分解中遗漏了关键实体。“检索失败”会显著降低检索性能,从而扰乱推理链并导致错误答案。
🔸为了解决这个问题,我们提出了一种渐进式检索和重写方法,即ChainRAG,它通过完成缺失的关键实体并从句子图中检索相关句子来顺序处理每个子问题,以生成答案。我们检索和重写过程中的每一步都建立在前一步的基础上,创建了一个无缝的链,从而实现了准确的检索和答案。最后,将所有检索到的句子和子问题答案进行整合,以生成原始问题的综合答案。
🔸我们使用三种大型语言模型:GPT4o-mini、Qwen2.5-72B和GLM-4-Plus,在三个多跳QA数据集(MuSiQue、2Wiki和HotpotQA)上评估ChainRAG。实证结果表明,ChainRAG在有效性和效率方面始终优于基线。
🛎️文章简介
🔸研究问题:多跳问答中,如何减轻信息检索过程中的信息缺失?
🔸主要贡献:论文提出了一种名为ChainRAG方法,有效改善检索增强的多跳问答系统的性能,特别是在处理复杂问题时的检索效果。
📝重点思路
🔸句子图构建:通过实体索引和句子之间的相似性连接句子,建立句子图,以减少后续构建步骤的冗余。
🔸子问题分解:使用大语言模型(LLM)将多跳问题分解为多个子问题,逐个处理以构建完整的推理链。
🔸检索与实体扩展:在每个子问题的检索过程中,通过计算嵌入相似性和使用交叉编码器评估候选句子的相关性,选择种子句子并进行邻居扩展。
🔸子问题重写:识别需要重写的子问题,并利用前一个子问题的信息来完善当前子问题,以减轻检索性能的下降。
🔸答案和上下文集成:通过两种不同的方法(子答案集成和子上下文集成)生成原始问题的综合答案。
🔎分析总结
🔸ChainRAG在多个复杂数据集(如MuSiQue、2Wiki和HotpotQA)上表现出显著的性能提升
🔸实验结果表明,子问题重写显著提高了缺乏关键实体的子问题的检索表现,改进幅度可以超过其他子问题。
🔸句子图在检索过程中的有效性得到了验证,移除句子图会导致性能下降,进一步确认了其构建的合理性和有效性。
💡个人观点
论文的核心是在多跳问答中,基于相关性构建句子之间的图结构,通过问题分解来逐步求解。
🧩附录