NUS:通过RAG加速LLM推测解码

在这里插入图片描述

📖标题:Long-Context Inference with Retrieval-Augmented Speculative Decoding
🌐来源:arXiv, 2502.20330

🌟摘要

🔸长上下文大型语言模型(LLM)的出现为处理大量文档提供了一种有前景的替代传统检索增强生成(RAG)的方法。然而,长上下文推理的计算开销,特别是在管理键值(KV)缓存方面,带来了巨大的效率挑战。虽然推测解码(SD)传统上使用较小的草稿模型加速推理,但由于内存受限的KV缓存操作,其在长上下文场景中的有效性会大大降低。
🔸我们提出了检索增强SPeculatIve解码(RAPID),它利用RAG来加速和提高长上下文推理中的生成质量。RAPID引入了RAG起草者——一个在缩短的检索上下文上运行的LLM草案——来推测长上下文目标LLM的生成。我们的方法实现了一种新的范式,在这种范式中,相同规模甚至更大的LLM可以作为RAG的起草者,同时保持计算效率。为了充分利用更强大的RAG起草者的潜在优势,我们开发了一种推理时知识转移动态,丰富了RAG的目标分布。
🔸在LLaMA-3.1和Qwen2.5主干上的广泛实验表明,RAPID有效地整合了这两种方法的优势,实现了显着的性能改进(例如,LLaMA-3.1-8B在InfiniteBench上从39.33提高到42.83),速度提高了2倍以上。我们的分析表明,RAPID实现了超过32K上下文长度的稳健加速,并在现实应用中表现出卓越的生成质量。代码在https://github.com/John-AI-Lab/RAPID

🛎️文章简介

🔸研究问题:大语言模型(LLM)在长上下文推理中,因内存限制而导致计算效率低下。
🔸主要贡献:论文提出了一种新的检索增强推测解码方法(RAPID),通过结合检索增强生成模型和推测解码的优点,提高了长上下文推理的速度和生成质量。

📝重点思路

🔸引入RAG草稿模型,在处理长上下文时进行选择性信息检索,以在较短的上下文上生成候选输出,以提高推测解码的效率。
🔸通过反向定位RAG草稿模型作为教师模型,将知识转移到长上下文目标模型(学生模型)中,以增强目标模型的生成能力。
🔸设计检索增强目标分布,允许在推理过程中从RAG草稿模型中获取重要信息,同时保持对生成质量的验证能力。
🔸进行多种实验评估,包括与基线模型的比较,分析不同上下文长度和检索长度对性能的影响。

🔎分析总结

🔸RAPID在长上下文推理中实现了超过32K令牌的加速效果,且在适中的检索长度下表现出显著的效率。
🔸使用RAG草稿模型可以在生成质量上超越传统的长上下文模型,且具有更高的接受率(75-85%)。
🔸与传统的推测解码相比,RAPID在生成准确性上提升了2-8%,并且在所有配置下均表现出优于基线的性能。
🔸观察到“涌现现象”,即RAPID在某些情况下能够处理目标模型和RAG草稿模型单独无法处理的任务,表明其协同作用带来了新的能力。

💡个人观点

论文的核心是利用RAG模型做知识压缩,优化推测解码的上下文输入。

🧩附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值