文章目录 一、论文详解 1.1、项目背景 1.2、研究现状 1.3、论文核心 1.4、网络模型(RCAN,Residual Channel Attention Networks) 1.4.1、残差中的残差(RIR,Residual In Residual):由 G 个残差组(RG)和 1 条长跳跃连接(LSC)组成;每个RG由 B 个残差通道注意力块(RCAB)和 1 条短跳跃连接(SSC)组成;每个RCAB由 1 个通道注意力(CA)和 1 个残差块(RB)组成,每个RB具有 1 条短跳跃链接。 1.4.2、通道注意力(CA,Channel Attention) 1.4.3、残差通道注意力块(RCAB,Residual Channel Attention Blocks) 1.5、数据集 + 前处理 1.6、模型参数 1.7、研究结果 (基础)指标参数:PSNR + SSIM (基础)降质方法:BI + BD (1)RIR 和 CA 的性能测试(对比表) (2)使用双三次插值(BI)退化模型的结果(对比图) (3)使用模糊降采样(BD)退化模型的结果(对比图) (4)性能与识别能力(对比表) (5)性能与模型大小(对比图) 1.8、RCAN恢复的图像具有一定的模糊性(自测经验 + 解决方案) (1)主要因素:模型架构 (2)图像前处理:LR-HR 配对数据的质量 ① LR-HR 配准数据是否对齐(仅限于自提供数据对,而不是通过 HR 下采样得到 LR) ② HR 分辨率质量(采用图像增强提升 HR 图像分辨率,可以显著提升超分效果) ③ 归一化方法(min和max使用固定值) + 切块预测(归一化的影响) (3)模型训练:不同损失函数对 SR 的影响 (4)图像后处理 二、项目实战 2.1、虚拟环境 2.2、环境配置 方法一:RCAN开源代码:默认支持 PyTorch 1.2.0 —— 官方已移除(不建议) 方法二:basicSR开源代码:是一个集成了多种超分模型的工具 —— 建议 2.3、basicSR:RCAN 网络模型 —— 用于理解模型架构,可跳过 2.4、basicSR:模型训练 + 模型测试 (1)配置文件(参数详解):train_RCAN_x2.yml (2)配置文件(参数详解):test_RCAN.yml 2.5、basicSR:结果展示 2.6、basicSR:剪枝 —— 加速推理 (1)影响和经验:残差组数(num_group) + 残差块数(num_block) (2)影响和经验:特征通道数(num_feat) 2.7、basicSR:通量 —— MB/s (1)basicSR:参数测试 (2)basicSR:TensorRT加速 论文阅读 残差通道注意力网络 RCAN 一、论文详解 中文:使用非常深的残差通道注意力网络实现图像超分辨率 论文:Image Super-Resolution Using Very Deep Residual Channel Attention Network