近年来超分结果对比

近几年图像超分辨率经典方法结果对比

BI degradation:bicubic退化,即将HR图像进行双三次插值,缩下S倍,生成LR图像。

Quantitative results with BI degradation model. Best and second best results are highlighted and underlined

MethodScaleparamsSet5Set14BSD100UrbanManga109
EDSRx240.7M38.11/.960233.92/.919532.32/.901332.93/.935139.10/.9773
RCANx215.4M38.27/.961434.14/.921632.41/.902733.34/.938439.44/.9786
SANx2-38.31/.962034.07/.921334.42/.902833.10/.937039.32/.9792
CSNLNx2-38.28/.961634.12/.922332.40/.902433.25/.938639.37/.9785
RFANetx2-38.26/.961534.16/.922032.41/.902633.33/.938939.44/.9783
HANx2-38.27/.961434.16/.921732.41/.902733.35/.938539.46/.9785
EBPNx2-38.35/.962034.24/.922632.47/.903333.52/.940239.62/.9802
IRNx21.66M43.99/.987140.79/.977841.32/.987639.92/.9865-
EDSRx3-34.65/.928030.52/.846229.25/.809328.80/.865334.17/.9476
RCANx3-34.74/.929930.65/.848229.32/.811129.09/.870234.44/.9499
SANx3-34.75/.930030.59/.847629.33/.811228.93/.867134.30/.9496
CSNLNx3-34.74/.930030.66/.848229.33/.810529.13/.871234.45/.9502
RFANetx3-34.79/.930030.67/.848729.34/.811529.15/.872034.59/.9506
HANx3-34.75/.929930.67/.848329.32/.811029.10/.870534.48/.9500
EBPNx3------
IRNx3------
EDSRx443.1M32.46/.896828.80/.787627.71/.742026.64/.803331.02/.9148
RCANx415.6M32.63/.900228.87/.788927.77/.743626.82/.808731.22/.9173
SANx415.7M32.64/.900328.92/.788827.78/.734626.79/.806831.18/.9169
CSNLNx43M32.68/.900428.95/.788827.80/.743927.22/.816831.43/.9201
RFANetx4~11M32.66/.900428.88/.789427.79/.744226.92/.811231.41/.9187
HANx4-32.64/.900228.90/.789027.80/.744226.85/.809431.42/.9177
EBPNx4~7M32.79/.903229.01/.790327.85/.746427.03/.811431.53/.9198
IRNx44.35M36.19/.945132.67/.901531.64/.882631.41/.9157-

对IRN,作者用高分辨率HR图像进行输入,而不是真实情况下的低分辨率LR图像,用后者输入时,性能会降低,具体见后续的“IRN性能提升检验”介绍。



论文简介和链接

论文笔记:

  1. CVPR2020超分辨率方向论文整理笔记
  2. ECCV2020超分辨率方向论文整理笔记
  3. ICCV2019超分辨率方向论文整理笔记
  • EDSR:Enhanced Deep Residual Networks for Single Image Super-Resolution,papercode

    NTIRE2017超分冠军方案,使用增强的ResNet,去除Batch Norm。

  • RCAN:Image Super-Resolution Using Very Deep Residual Channel Attention Networks,papercode

    ECCV2018超分冠军方案,EDSR的改进,加入通道注意力。

  • SAN:Second-Order Attention Network for Single Image Super-Resolution,papercode

    CVPR2019,RCAN的改进,使用二阶注意力。

  • CSNLN:Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining,papercode

    CVPR2020,网络新基本块:跨尺度非局部注意力块和自样本挖掘机制。

  • RFANet:Residual Feature Aggregation Network for Image Super-Resolution,paper

    CVPR2020,网络框架基于EDSR,其将EDSR中多个残差块加入块间的残差连接,然后加入空间注意力模块,性能超过了RCAN和SAN。

  • HAN:Single Image Super-Resolution via a Holistic Attention Network,paper

    ECCV2020,全注意力机制:层、通道和位置的整体相互依赖关系进行建模。

  • EBPN:Embedded Block Residual Network: A Recursive Restoration Model for Single-Image Super-Resolution,paper

    ICCV2020,两分支的嵌入残差模块:分别恢复低频和高频信息,并将前层难以恢复的信息传入更深的层进行恢复。

  • IRN:Invertible Image Rescaling,papercode

    ECCV2020,可逆神经网络,将HR经小波变换分解为低频分量和高频分量作为网络的输入,网络生成潜在分布和多个LR图像,然后以此再逆变换重建HR图像,性能提升极大。


另外几篇可参考的相关论文

CVPR2020

DRN:Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution,papercode

​ 闭环问题:双监督方案。HR图像监督生成的SR图像,SR图像反过来受到LR图像监督。

UDVD:Unified Dynamic Convolutional Network for Super-Resolution with Variational Degradations,paper

​ 参考SRMD,训练数据重制作,LR图像包含多种降质;动态滤波器,多级损失。

ECCV2020

CDC:Component Divide-and-Conquer for Real-World Image Super-Resolution,papercode

​ 注意力机制改进:注意力组件分而治之。构建三个分别与平面,边缘和角相关联的组件注意力块实现真实世界的图像超分辨率。

LatticeNet:LatticeNet: Towards Lightweight Image Super-resolution with Lattice Block,paper

​ 轻量级晶格网络:双支路特征提取基本块,反向级联融合策略。

Learning with Privileged Information for Efficient Image Super-Resolutionpapercode

​ 教师/学生网络:以HR图像信息指导学生网络的学习。

ICCV2020

KMSR:Kernel Modeling Super-Resolution on Real Low-Resolution Images,papercode

​ 模糊核估计:用GAN估计HR的模糊核池,低质的HR同尺寸图像作为CNN网络的输入。

Wavelet Domain Style Transfer for an Effective Perception-distortion Tradeoff in Single Image Super-Resolutionpaper

​ 小波变换:将低质高感知图像,高感知低质的图像分别进行小波变换,生成高质高感知的图像。


<think>好的,我现在需要回答用户关于算法实现原理和辨率重建算法的问题。首先,我得理解用户的需求。用户提到了参考的四个引用,涉及不同的算法如SRCNN、POCS以及深度学习方法。用户可能希望了解这些算法的基本原理,以及如何实现它们。 首先,我应该明确辨率重建的基本概念。辨率重建是通过算法从低辨率图像恢复高辨率图像的过程。这可以为传统方法和基于深度学习的方法。传统方法可能包括插值、基于重建的方法如POCS,以及基于学习的方法如稀疏编码。而深度学习方法如SRCNN、ESPCN、EDSR等则是近年来主流的方法。 接下来,我需要整理每个引用中的信息。引用1提到深度学习模型在中的应用,提高了质量但需要大量资源。引用2详细介绍了SRCNN算法,说明其是端到端的CNN方法。引用3讨论了POCS算法,使用迭代和约束集来重建图像。引用4指出深度学习方法的挑战,如模型复杂度和计算资源需求。 用户的问题包括实现原理和算法细节,所以需要点解释传统方法和深度学习方法,并举例说明几个关键算法如SRCNN和POCS。同时,要结合引用中的信息,比如SRCNN的结构、POCS的迭代过程,以及深度学习方法的优缺点。 需要注意回答的结构要清晰,步骤解释,并且符合用户要求的格式,如使用中文,数学公式用$...$,独立公式用$$...$$。此外,要生成相关问题,并正确添加引用标识。 现在需要确保覆盖以下几点: 1. 辨率重建的定义和应用场景。 2. 传统算法:插值法、POCS算法(引用3)、逆滤波(引用1)。 3. 深度学习方法:SRCNN(引用2、4)、其他模型如ESPCN、EDSR。 4. 实现原理,包括数学公式和网络结构。 5. 优缺点比较,引用中的挑战如计算资源(引用1、4)、PSNR评估(引用3)。 6. 提供代码示例,可能来自引用2或4。 7. 生成相关问题。 需要检查是否有遗漏的引用内容,并正确标注引用标识。例如,在讨论POCS算法时引用[^3],SRCNN引用[^2][^4],深度学习挑战引用[^1]。 然后,编写回答部,确保每个算法部都有对应的原理和公式。例如,SRCNN的三层卷积结构可以用数学公式表示,POCS的迭代公式使用$$...$$。代码部选取SRCNN的简单示例,如引用2中的MATLAB或引用4的Python代码,但用户提供的引用中没有具体代码,可能需要用伪代码或结构描述。 最后,生成相关问题,涵盖传统与深度方法、评估指标、优化方向、计算资源挑战等,参考用户提供的示例问题的结构。 需要确保所有引用都正确标注,没有格式错误,数学公式正确使用LaTeX,如$y = W_1 * x + b_1$,以及独立公式: $$ x^{(k+1)} = P_C \left( x^{(k)} + \lambda (y - H x^{(k)}) \right) $$ 总结后,组织成用户要求的层次结构,步骤说明,保持语言口语化但专业,避免使用Markdown格式,仅使用换行和段落隔。</think>### 辨率重建算法实现原理 辨率重建(Super-Resolution, SR)是通过算法从低辨率(LR)图像恢复高辨率(HR)图像的过程,核心原理包括**插值优化**、**频域重建**和**深度学习映射**。以下是关键实现方法: --- #### 一、传统算法 1. **插值法** 通过双线性或双三次插值直接放大图像,但会导致模糊。例如,双三次插值公式为: $$f(x,y) = \sum_{i=0}^3 \sum_{j=0}^3 a_{ij} x^i y^j$$ 其局限性在于无法恢复高频细节。 2. **基于重建的方法** - **POCS算法(凸集投影)** 通过迭代约束(如平滑性、非负性)逼近真实图像。迭代公式为: $$x^{(k+1)} = P_C \left( x^{(k)} + \lambda (y - H x^{(k)}) \right)$$ 其中$H$为退化模型,$P_C$为投影到约束集的操作。实验显示其PSNR提升显著。 - **逆滤波复原** 通过频域逆滤波补偿退化,但易受噪声放大影响。 --- #### 二、深度学习方法 1. **SRCNN(辨率卷积神经网络)** - **结构**:三层卷积网络(特征提取→非线性映射→重建)。数学表达为: $$F(y) = W_2 * \sigma(W_1 * y + b_1) + b_2$$ 其中$W_i$为卷积核,$\sigma$为ReLU激活函数[^2]。 - **优势**:端到端映射,无需人工设计特征,重建质量高。 2. **ESPCN(高效子像素卷积)** 在LR空间提取特征,最后通过子像素卷积层放大图像,减少计算量。 3. **EDSR(增强深度残差网络)** 去除冗余模块(如批归一化),通过残差学习提升性能,但参数量较大。 --- #### 三、关键挑战与优化 1. **计算资源**:深度模型需大量GPU资源训练。 2. **纹理细节**:像素级损失易导致图像过平滑,需结合对抗损失(如GAN)。 3. **实时性**:轻量化设计(如MobileNet)可部署到移动设备。 --- #### 四、代码示例(SRCNN简化版) ```python import tensorflow as tf def srcnn_model(input_shape=(32, 32, 1)): model = tf.keras.Sequential([ tf.keras.layers.Conv2D(64, 9, activation='relu', padding='same', input_shape=input_shape), tf.keras.layers.Conv2D(32, 1, activation='relu', padding='same'), tf.keras.layers.Conv2D(1, 5, padding='same') ]) model.compile(optimizer='adam', loss='mse') return model ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值