【哈夫曼树】介绍与应用

本文介绍了哈夫曼树,一种在带权叶节点的二叉树中通过最小化带权路径长度来构建的最优二叉树。重点讲解了如何构造哈夫曼树以及其在数据压缩中的哈夫曼编码应用,包括固定长度编码和可变长度编码的区别。同时指出哈夫曼编码的非唯一性,因其依赖于树的结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

带权路径长度

哈夫曼树(最优二叉树)

在含有n个带权叶结点的二叉树中,其中带权路径长度(WPL)最小的二叉树称为哈夫曼树,也称最优二叉树。

构造哈夫曼树

哈夫曼编码

将字符频次作为字符结点权值,构造哈夫曼树,即可得哈夫曼编码,可用于数据压缩。

固定长度编码――每个字符用相等长度的二进制位表示

可变长度编码――允许对不同字符用不等长的二进制位表示
若没有一个编码是另一个编码的前缀,则称这样的编码为前缀编码,前缀编码解码无歧义,非前缀编码解码有歧义

因哈夫曼树不唯一,因此哈夫曼编码不唯一。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SaN-V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值