关键字: [Optimum Neuron, Generative Ai Models, Amazon Web Services Hardware Acceleration, Hugging Face Integration, Model Training Deployment, Open Source Ecosystem]
本文字数: 1000, 阅读完需: 5 分钟
导读
在Innovate 2024大会上,Chris Fregli和Philips Schmidt发表了题为”GenAI基础模型成功蓝图”的演讲。他们探讨了如何利用亚马逊云科技的专用硬件,如TRAINIUM和INFERENTIA,来训练和部署生成式AI基础模型。他们阐释道,TRAINIUM用于训练模型,而INFERENTIA则用于在生产环境中服务模型。演讲者还强调了Hugging Face Optimum Neuron库的重要性,该库简化了在亚马逊云科技加速器上编译、训练和部署Transformer和扩散模型的过程。该演讲重点介绍了亚马逊云科技和Hugging Face如何通过专用硬件和开源工具,实现高效训练和部署生成式AI模型、提高性能并节省成本。
演讲精华
以下是小编为您整理的本次演讲的精华,共700字,阅读时间大约是4分钟。
在这场演讲中,亚马逊云科技的首席解决方案架构师 Chris Fregli 和 Hugging Face 的技术主管 Philips Schmidt 深入探讨了用于生成式人工智能的基础模型,以及在云端成功训练和部署这些模型的最佳实践。
首先,Chris 强调了当今生成式人工智能模型的广泛应用,它们被应用于从研究到客户服务、数据分析到数字助理等各个领域。在亚马逊云科技上,这些模型可以直接从 Hugging Face Hub 部署到 SageMaker,或者通过 Amazon Bedrock API 访问许多第三方模型并进行微调。
接下来,Chris 介绍了亚马逊云科技专门用于训练(Trainium)和推理(Inferentia)这些大型模型的硬件,相比标准实例可以显著节省成本并提高性能。许多知名客户如三星、飞利浦和字节跳动已经在使用这些加速器,它们得到了 PyTorch、OctoML、Ray 和 Hugging Face 等广泛生态系统的支持。
用于训练的 Trainium 实例,如 tr_n1.32xlarge 和 tr_n1n.24xlarge,具有高达 1.6 Tb/s 的网络带宽,对于大规模工作负载至关重要。在推理方面,Inferentia 2 实例如 inf2.xlarge 和 inf2.24xlarge 为扩散模型(如 Stable Diffusion)提供高达 90% 的每美元吞吐量提升,同时降低延迟。
为了快速入门,可以通过 SageMaker Studio 或 EC2 启动 Trainium 实例,安装抽象底层硬件的 Neuron SDK,并像往常一样监控和优化工作负载。
接着,来自 Hugging Face 的 Philips Schmidt 介绍了 Optimum Neuron,这是一个建立在 Neuron SDK 之上的库,极大简化了在亚马逊云科技硬件上使用 Transformers 和扩散模型的过程。只需几行代码,就可以从 Hugging Face Hub 加载预编译的模型(如 Stable Diffusion 或 LLaMa),并在亚马逊云科技 Inferentia 上生成图像或文本。
Open LLM Leaderboard 评估不同大型语言模型在各种任务上的表现,而 MTEB Leaderboard 则专注于多语言文本嵌入模型。这些排行榜允许根据模型大小、语言等进行过滤,以找到性能和成本之间的最佳平衡。
最后,Philips 介绍了一个参考架构,用于利用亚马逊云科技服务(SageMaker、Inferentia、OpenSearch 等)和 Hugging Face 模型构建带有检索功能的应用程序。该架构结合了用于文档向量化的嵌入模型、用于最近邻搜索的 OpenSearch,以及用于重新表述用户查询和生成相关回复的大型语言模型。
总之,亚马逊云科技与 Hugging Face 的合作关系,通过 Optimum Neuron、Neuron SDK 和 Trainium/Inferentia 实例等工具,使得在云端训练和部署领先的生成式人工智能模型变得高性能和高成本效益。
总结
这场演讲深入探讨了生成式人工智能基础模型的领域,全面概述了它们在亚马逊云科技上的应用、训练方法和部署策略。首先,演讲强调了这些模型在各个领域的广泛应用,从搜索和客户服务到数据分析和数字助理。随后,演讲者介绍了Amazon Bedrock,这是一个API,可以轻松将第三方模型集成到应用程序中,实现微调和持续预训练。
演讲的核心重点转移到亚马逊云科技上专门为训练和服务生成式人工智能模型而设计的硬件Trainium和Inferentia,这些硬件可以显著节省成本并提供高性能。演讲展示了Hugging Face Optimum Neuron库,它简化了在亚马逊云科技加速器上编译、训练和部署Transformers和扩散模型的过程。并提供了实际示例,演示了如何在亚马逊云科技上轻松生成Stable Diffusion图像,以及在亚马逊云科技Inferentia上部署大型语言模型LLaMa。
此外,演讲者介绍了Open LLM Leaderboard和大规模文本嵌入基准(MTEB) Leaderboard,这些是评估和选择最合适的开源模型的宝贵资源,根据性能、大小和语言要求进行选择。最后,演讲提出了一个参考架构,说明了如何将嵌入模型、语言模型和亚马逊云科技服务(如SageMaker、Inferentia和OpenSearch)集成在一起,构建利用生成式人工智能的强大检索应用程序。
演讲最后呼吁与会者探索所提供的资源,在社交媒体上与演讲者互动,并通过调查问卷提供反馈。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 -- 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。