亚马逊云科技:生成式AI在各行业的应用落地案例和创新场景

关键字: [innovate2024, Bedrock, 生成式Ai, 应用场景, 数据基础, 工具链, 多模态]

本文字数: 3900, 阅读完需: 20 分钟

导读

在本次亚马逊云科技Innovate线上大会上,主讲人分享了生成式AI在各行业的应用落地案例和创新场景。他们强调,企业应基于自身业务特点选择合适的生成式AI应用场景,利用私有数据构建差异化竞争优势。同时,企业需要具备数据准备、提示词工程、知识库构建等能力,并借助工具链如Bedrock、Dify等快速落地应用。未来,多模态模型和AI与传统技术融合有望成为新热点,催生更多创新应用如元宇宙等。亚马逊云科技提供了技术、产品、合作伙伴等全方位支持,助力企业实现生成式AI落地。

演讲精华

各位直播间的朋友们,大家下午好,欢迎来到 Innovate on Air 开放麦直播间。我是今天的主持人宋洪涛,来自亚马逊云科技市场部。现在我们的 Innovate 大会正在同步直播中,今天的大会可以说是干货满满,精彩非常。为了帮助各位更好地了解我们 Innovate 大会的一些精彩亮点,今天我们有幸邀请到了两位重量级嘉宾,来自亚马逊云科技生成式AI领域的专家,来和我一起解读本次大会。

首先请允许我简单介绍,坐在我左边的是来自亚马逊大中华区产品技术部总监王小野老师。欢迎您的到来,请简单跟直播间的朋友打个招呼。

王小野老师表示:“大家好,我是王小野,来自亚马逊云科技产品部负责产品的技术专家团队。近两年我团队专注于帮助客户在生成式AI上面通过各种PoC项目取得成功。所以今天非常荣幸能利用这个时间,一是跟大家解读一下我们今天的Innovate大会有什么,也是分享一些我们这一年来两年来看到的生成式AI的进展和一些心得。”

另一位是亚马逊云科技解决方案架构师张孝峰老师。欢迎张老师,请您也简单给直播间的朋友打个招呼。

张孝峰老师表示:“大家好,我是张孝峰,我是负责游戏行业的客户。一得益于这个行业,游戏行业是比较早去接触生成式AI的,所以我个人本人也比较早去接触这样的生成式AI。也非常高兴地看到今天,生成式AI在各行各业都很好地发展起来,希望把我的一些经验跟大家去分享,跟我看到的这次Innovate的很多的分论坛,我自己的一些想法跟大家去分享。”

主持人表示,很高兴两位老师来到直播间,在接下去的一个小时里,将一起探讨生成式AI的下一篇章。欢迎大家随时向他们抛出问题,他和两位老师将尽最大努力给出看法与见解,希望对各位有所启发。

提到生成式AI,现在基本上各行各业的客户都在讨论,可以说是一句话”如果你不谈论生成式AI,你就不在这个游戏里面”。不管是从技术迭代还是从产品落地,生成式AI都已经进入了深水区,很多客户从好奇或兴奋阶段进入到了实干阶段。在这个阶段里,有些企业已经切实尝到了生成式AI带来的好处,也有很多客户遇到了困难或困惑。

在整个生成式AI的提问中,各种不同的人在不同的行业里面提出应该怎么做的问题。当然一个小时无法全部讲完,但很高兴大家是非常热情去做这个事情。

为了帮助客户更好地理解本次大会,特意举办了生成式AI Innovate线上大会,以”AI新视野,连接新世界”为主题。汇聚全球的产品专家、行业翘楚以及技术先驱,通过主题演讲、圆桌论坛、边对话以及技术分论坛的方式,分享生成式AI在国内外客户的典型落地案例,探讨潜在创新应用场景及新机遇,解读当前发展趋势。希望大会能为客户和开发者朋友提供交流、互动和学习的平台,共叹生成式AI的无限可能。不管您是企业领导者、业务决策者还是开发者朋友,相信您都可以从本次大会中找到适合您的内容。欢迎大家对本次大会持续关注。

回到刚才观看的大会主论坛,其中包括亚马逊大中华区产品部总经理Erik Chen先生的主题演讲”加速生成式AI从想法到落地”,极客公园张鹏老师携手Dify和质朴,以及亚马逊云科技小王老师的圆桌对话,亚马逊云科技专业服务团队王承华老师携手纳斯达克和GoNoodle分享生成式AI在企业应用落地的真实案例等,都是非常精彩的内容。如果没来得及观看,会有线上回放,希望大家有机会可以去看一下。

主持人随后向王小野老师请教,基于刚才看到的分论坛内容,您最大的收获是什么?或者分享两点关键收获。

王小野老师表示,最大的感受应该是去年和今年有质的转变。从客户提出的问题可以看出,去年客户在问什么是生成式AI、大模型和原来AI有什么不同、它的原理是什么等概念性问题,更多是好奇或兴奋阶段。而今年客户不再问这些概念问题,而是问模型为什么这样写、有没有优化方法、在线上应用场景下模型能不能再便宜一点等,感受到客户都在问与成本、性能相关的问题,切切实实地投入到生产中,确实是落地到生产了。

这是第一点感受,有了阶段化的质变。第二点是,去年客户在问哪些场景可以探索,今年则可以给出建议,优先探索哪些场景。他将场景分为两类:有趣场景和有用场景。

有趣场景是指对模型结果不太在意的,比如情感陪伴聊天机器人、个人生成图像作诗作画等小工具,这些场景可以优先去做,因为已有客户通过这种方式实现了不错的收支平衡和用户活跃度。

有用场景则分为赋能员工个人用户和赋能原有流程自动化两种。对个人用户,比如亚马逊内部提供写文档助手检查语法,受到欢迎。在有用这一点上,需要利用好数据以及工程化手段,或者结合Function,再加上周围工程化能力,保证安全和内容。这种场景下不能只靠模型,需要加入工具和工程能力。

比如翻译、企业知识库等相对严肃的场景,都可以优先展开。再到真正严肃的法律医疗场景,可以细分找到相对和前两种场景更贴近的细分场景先做。从这些场景上,已经越来越有信心给出建议。

主持人总结,王老师提到了两类场景:企业可以共同探索有趣场景,这些虽然短期内不一定能见到真正业务影响,但一旦成功会产生较大影响;另一类是有用场景,经过客户实际验证的比较成熟的运营场景。基于此,亚马逊云科技总结了生成式AI的十大主流场景,包括聊天机器人、智能翻译、教育助手等,并开发了相应Demo搬到线上Demo中心,欢迎大家体验。

主持人表示,本次大会的主要目的就是讲授生成式AI如何为企业带来真正的业务影响,而不只是展望生成式AI能做什么。无论您是已入门的企业还是在尝试有趣场景的企业,希望您都能在本次大会上找到灵感或启发。

随后主持人向张孝峰老师请教,作为一个企业,如果现在还没有开始生成式AI之旅,您是怎么看待的?是参考同行或市场上成功实践,还是自己从0到1探索新场景?或者两者结合?请分享您的观察或切身经验。

张孝峰老师表示,游戏公司确实是最早接触生成式AI的一波企业。第一,这种场景对游戏行业来说是有趣又有用的。开始接触AI美术、文字生成时,游戏公司就可以节省大量人力投入成本或提高质量,而且相对没那么严肃,错误可能更有趣更能探索边界。到现在应该没有游戏公司没把生成式AI用到生产线上。比如原图生成、文本生成、小语种翻译等,生成式AI做得很好,能更贴近当地文化和专有人物。

第二,游戏行业为什么会比较快进入,是因为生成式AI把这种知识和能力平民化了,更容易获得。亚马逊云科技为此做了很多努力,将许多AI大模型以商业友好或准开源方式提供,并快速部署到云上。如果没有能力部署模型,可直接调用亚马逊的API,以非常低成本直接使用。

亚马逊云科技平台也吸引了很多合作伙伴来帮助客户达成生成式AI场景。比如CrackedAI,他们长期做动画生成,在生成式AI出现后抓住机遇,现在可以为游戏提供更灵活适应客户需求的动画生成。再如云视科技,他们原来没有生成式AI能力,但利用亚马逊的能力快速做出了AI孔子聊天机器人。

所以无论创业公司还是成熟企业,关键是找到有趣有用的业务场景,这是独特优势所在。再判断是否可使用生成式AI解决,至于如何解决,亚马逊云科技和合作伙伴都可以帮助。

主持人总结,企业应基于自身业务特点和数据人才优势快速启用生成式AI。如果能力不足,亚马逊云科技提供了技术、产品、工具和人力资源支持的共创共建方案。另一条路径是在亚马逊合作伙伴生态中找到开箱即用或定制化解决方案。

王小野老师补充,合作伙伴的重要性在于,过去很多现有合作伙伴是云专家,现在需要快速帮助客户提升AI构建能力;另一方面,传统行业属性强的合作伙伴也需要提升AI能力并结合原有场景;还可能会有新的AI合作伙伴进入,比如擅长Agent自动化技术再结合硬件能力,在制造业有新机会。

正是因为有了合作伙伴的能力,生成式AI的无限可能变得更广泛,这种能力现在是非常平均地赋能给每个人的。

主持人表示,以前AI给人的感觉是只有工程师才能接触到,但现在生成式AI出现后,不管是业务人员还是销售代表,同样可以享受这种福利。在主论坛中也有专家分享,最好的Prompt工程师可能是最懂业务的业务人员。

主持人表示,如果企业都千篇一律地引入同一赛道,很难找到差异化优势。从具体落地角度看,不知道两位老师能否分享一下,企业如何利用自身优势,避免打造同质化应用,在业务或市场上取得竞争优势?

王小野老师表示,企业的差异化竞争力核心是自身所属行业的多年经验训练,以及数据。就像亚马逊云科技为自身云服务开发的聊天助手一样,背后沉淀了多年的数据积累。数据是生成式AI应用中不可忽视的重要一环。

如果将数据比作冰山,模型只是冰山一角,数据是冰山下面的重要部分。企业需要具备几层数据能力:

首先是Prompt Engineer提示词工程的基础数据应用能力,包括如何利用缓存、提高吞吐等工程工作。

再到下一层,如何将自身沉淀的知识用于控制模型输出,通过检索增强生成(RAG)等方式,从历史数据库提取相关内容,再由模型甄别总结为精炼结果提供给用户。

再到底层,对于一些特定任务,现有头部模型能力可能不足,需要通过FinetuneFunction等方式对准备数据进行调教。

所有这些技能和工具都围绕着企业需要具备的”Data for AI”的数据能力。简单来说,就是要准备数据以便为AI做好准备。

主持人认为,好的数据决定了好的生成式AI应用,生成式AI也可以反过来促进企业更好利用数据。关于”AI for Data”,王老师是否能分享一下自己的观察?

王小野老师表示,AI for Data确实是一个有潜力的领域,但目前还没有特别成熟。已经看到很多用户在做的,可以分享几个例子:

第一是利用生成AI做聊天式BI报告生成、用自然语言查询等,亚马逊推出了Q for QuickSight服务支持这种场景。

第二是元数据管理,过去只能处理表格数据注释,现在生成式AI对语义建模和海量非结构化数据抽取总结的能力,使得重新梳理元数据管理成为可能,不再局限于关系型结构化数据。

第三是自动驾驶图像数据处理,利用生成式AI的多模态能力直接看图片,筛选出有用的数据,这对于过去难以管理的非结构化数据很有帮助。

虽然目前还没看到特别成熟的软件工具,但相信未来企业对整个内部源数据的宏观管理,将会用AI大大提升数据管理能力。

主持人表示,数据和生成AI结合是一个很有内容的话题,由于时间关系就不展开了,欢迎大家线下咨询技术专家了解更多。

企业通过相应数据战略把数据准备好后,如何快速高效构建出可立即产生业务价值的生成式AI应用场景,很大程度取决于采用的工具和现有工具链产品。从这个层面,主持人请张孝峰老师根据自己的经验分享。

张孝峰老师以游戏NPC为例说明,比如AI孔子项目使用了相对简单的工具链,因为没有深入到某个游戏的实际背景中。所有大源模型的数据来源都是互联网数据,是互联网知识的总和,但不等于人类知识的总和。比如一个西游记游戏,如果给悟空加入了新的背景资料,这在互联网上是没有的,但对游戏来说是必须的,所以必须把已有数据灌入模型中。

灌入的方式就需要一系列工具链,单靠Prompt工程是不够的,可能还需要检索增强生成(RAG)、多智能体(Agent)等,将这些工具组成一条工具链。这些工具都很新,如果每个人都重新学习就太低效了。

所以已有一些公司如Dify把这些AI工程化工具链整合好了,客户直接调用Dify工具就能体验每个模块的作用,不用从头学习。在本次大会上,Dify的专家也做了分享。亚马逊云科技的架构师和工程师也会指导客户使用这些工具链产品。

虽然Dify目前是完全开源的,但这些AI公司和亚马逊都是看重AI的长期发展潜力和利益,未来一定可以为客户和整个人类服务,实现盈利。

像Dify这样的通用AI公司,也可能会有一些专注于特定行业的AI公司成为亚马逊的合作伙伴,帮助开发者进步。

主持人总结,张老师分享了工具链在构建应用中的重要性,已有公司整合出开箱即用的工具链产品,避免重复学习,加速落地。亚马逊云科技和合作伙伴都在推动这一进程。

接下来,主持人请两位老师展望一下,除了目前的热点技术话题外,生成式AI的下一个技术热点可能是什么?可能催生哪些创新应用场景?

王小野老师表示,生成式AI的下一个技术热点可能不在AI技术方向,而是AI与传统技术的融合创新,比如元宇宙。已经看到原有硬件厂商开始尝试在边缘设备上运行小模型与云端互动。围绕AI能力,传统技术会发生变革,这是最让人兴奋的。

如果回到正AI方向,一定会出现所谓的全模态(Multimodel)模型,不再是当前的单向多模态,而是多种输入模态对应多种输出模态。虽然技术上已不难,但在数据集上仍有挑战,不过这种模型出现只是迟早的事。

张孝峰老师表示,他更喜欢从游戏行业切入。今年年初,他采访了网易的一位AI负责人,他们在武侠游戏中构建了国际领先的智能NPC系统。不仅每个NPC都有出色的互动,而且整合到整个游戏故事线中,让玩家有沉浸感。

这让张老师意识到,今天的AI正是未来元宇宙最重要的灵魂。过去的元宇宙只关注视觉听觉等形式感受,而忽视了灵魂的重要性。只有生成式AI的出现,才能让每个人在元宇宙中获得独一无二的体验。

当然,实现元宇宙梦想还需要与很多技术结合,这对普通开发者来说可能很遥远。但张老师认为,在AI时代,每个人都获得了过去无法想象的知识获取和运用能力,所以任何人都有机会参与其中。

正如本次大会的分论坛所展示的,来自各行业的客户都用上了亚马逊的AI能力,解决了自身问题,这就是AI时代赋予每个人的新机遇。

主持人总结,两位老师从不同角度展望了生成式AI的技术发展方向和潜在创新应用场景,为大家拓展了思路。

最后,主持人请两位老师从本次大会的分论坛中各推荐两个令自己印象深刻的环节,并简单介绍理由。

王小野老师推荐大家观看有关亚马逊Bedrock产品的环节,因为Bedrock旨在提供最便捷的API方式调用模型、连接自有数据知识库、使用传统编程语言框架实现诸如智能体等AI能力。如果有构建应用的想法,可以考虑使用Bedrock。

张孝峰老师推荐大家观看Dify公司的分享环节。Dify是一家整合了多种AI工程化工具链的公司,客户可以直接在亚马逊云科技平台上调用和学习使用Dify工具,而不必从头学习,可以加速应用落地。

主持人再次感谢两位老师的精彩分享,希望能给大家在生成式AI之旅中有所启发和收获。欢迎持续关注亚马逊云科技其他市场活动,也希望大家持续锁定本次Innovate在线大会,关注更多精彩内容。

总的来说,这次分享全面解读了亚马逊云科技本次Innovate大会的主题内容,为企业客户如何真正将生成式AI落地到实际业务场景、实现商业价值提供了行之有效的指引。从场景选择、数据策略、工具应用等多个维度给出了可操作的建议,并展望了生成式AI未来的技术发展趋势和创新应用前景,内容丰富、观点独到、指导意义重大。

下面是一些演讲现场的精彩瞬间:

亚马逊云科技生成式AI领域的双子星嘉宾现身innovate2024大会,解读干货满满的精彩亮点。

552128f996b4d114604301cceeee0081.png

生成式人工智能为传统行业带来新机遇,赋能每个人实现无限可能

亚马逊云科技通过云计算服务为企业提供大模型和AI能力,企业可以利用自身行业数据优势和亚马逊云科技的技术积累,实现差异化发展。

efaaa2590024747e1296ffd38e86a84b.png

通过结合知识数据库和大型语言模型的能力,RAG系统能够以更可靠和精炼的方式为终端用户提供内容。

ab8d82a33adafa293f873f2e0ba09723.png

元宇宙最重要的灵魂是由生成式AI赋予的独特个性化体验。

7a8d1eb3bb985f34e10428a5f20d9d70.png

在AI时代,每个人都获得了前所未有的能力,只要开始使用AI,就能感受到这种力量。

5957e5e497ae9fdf2bca6a8e93d2ee62.png

亚马逊云科技的技术专家和社区合作伙伴将带来动手实验,体验AmazonQ和AmazonBedrock助力业务场景。

91fcdc3430824a0fa81676f4d6b085f6.png

总结

  1. 生成式AI已从概念验证阶段进入落地阶段,企业客户关注点从场景探索转向模型优化、成本和性能。
  2. 企业可优先探索有趣场景(如情感陪伴、生图生画等)和有用场景(如翻译、知识库等),前者侧重创意,后者需结合数据和工程化手段确保安全性和内容质量。
  3. 企业应基于自身数据优势和行业属性,利用数据为AI做准备,打造差异化竞争力。生成式AI赋能企业更好利用数据,提取洞察。
  4. 工具链对快速构建应用至关重要,如Dify等开源工具链。亚马逊云科技提供产品工具(如AmazonBedrock)和合作伙伴生态系统支持。
  5. 潜在技术热点包括多模态模型、AI与传统技术融合(如元宇宙)等,有望催生更多创新应用场景。
  6. 亚马逊云科技通过产品演示、客户案例分享等,为企业提供学习交流平台,共同探索生成式AI的广阔前景。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值