玩转大模型!一分钟带你免费试用Amazon Bedrock

本文介绍了一分钟内通过微信扫码获取AmazonBedrock云实验环境,引导读者使用其AI基础模型、聊天和图像生成功能。重点在于演示如何快速集成最新AI技术到项目中,且无需管理基础设施。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0_cover_text_ppt

一分钟带你免费试用Amazon Bedrock

Amazon Bedrock,一个为开发者打造的全托管服务,让你用一个 API 就能接入来自 AI21 Labs、Anthropic、Cohere、Meta、Stability AI 和 Amazon等领先人工智能公司的高性能 AI 基础模型(FM)。想在你的项目中加入最新的 AI 技术?Amazon Bedrock 提供了必要的工具集,帮你构建安全的 AI 应用。它支持微调(Fine-Tune)和检索增强生成(RAG),让你根据自己的数据定制模型。而且,作为一个无服务器服务,你无需管理任何基础设施,即可使用已经熟悉的亚马逊云科技服务[link]将生成式AI功能安全地集成和部署到你的应用程序中。

一般来说,体验亚马逊云科技服务的第一步都是注册账号。现在通过文中的这种方式,仅需微信扫码,你可以在短短一分钟内,快速获得一个只属于你的云实验环境,立刻开始免费试用Amazon Bedrock!其中包括:

  • 使用Amazon Bedrock - 聊天模式(Chat)来提出问题并获得高质量回答,包括日常问答及代码生成。
  • 使用Amazon Bedrock - 图像模式(Image)体验文字生成图像功能,让你在几秒钟内得到你用文字描述的图片。

[第一步] 微信扫码,免费获取Amazon Bedrock 云实验环境

  1. 点击链接,微信扫描二维码,免费获取Amazon Bedrock 云实验环境https://cloudlab-beta.amazoncloud.cn

0_cloudlab_landing_page

  1. 扫码之后,点击“限时试用”,一个新的云实验环境将会在浏览器的新窗口中打开。

注意事项:1/ 请勿将任何个人或公司重要数据存放在云实验账号里,2/ 该账号有效期为1天,到期自动关停

0_cloudlab_qr_scanned_page

[第二步] 进入账号,访问Amazon Bedrock UI

  1. 点击用户设置按钮,切换语言为“中文(简体)”

1_language_setting
2. 点击切换服务区域按钮,切换服务区域为“美国西部(俄勒冈州)”

1_region_setting
3. 若你当前不在Amazon Bedrock产品页面,可通过搜索“Amazon Bedrock”进行访问。

1_search_Bedrock

  1. Amazon Bedrock产品页面上,点击“入门”开始试用。

1_get_started_Bedrock

[第三步] 配置基础模型(FM)访问权限

  1. 在概述页面,我们可以看到Amazon Bedrock支持多个基础模型(FM),其中包括Amazon Titan,Claude,Jurassic,Command,Stable Diffusion 以及 Llama2。

1_overview_Bedrock

  1. 在左侧的导航栏中,选择“模型访问权限”。

1_model_access_tab

  1. 这里我们可以看到,所有模型的访问状态都是“可请求”或者“需要应用场景详细信息”。这里我们点击右上角的“管理模型访问权限”。

1_model_access_request_button

  1. 为了能够试用Claude模型,我们点击“提交应用场景详细信息”。

1_model_access_request_claude

  1. 在弹出的页面上,依次填写以下内容。公司名称及公司网站URL可任意填写,完成后点击“提交”。

请添加图片描述

  1. 成功提交后,再次点击右上角的“管理模型访问权限”按钮。选择左上角的全选按钮,选中所有模型,最后点击“请求模型访问权限”。

1_model_access_select_all_submit

  1. 稍等片刻并刷新页面,我们可以看到,所有模型都已经被授予了访问权限!

1_model_access_granted

[第四步] 与Amazon Bedrock 聊天

  1. 首先,我们在左侧的导航栏中选择“聊天”

2_access_chat

  1. 点击“选择模型”,来选择我们将要使用的基础模型(i.e. 大语言模型)

2_chat_select_model

  1. 这次云实验我们选择Anthropic的Claude v2.1大语言模型,来体验其强大的推理能力和中文处理能力。点击“应用”完成设置。

2_chat_select_model_claude21

  1. 我们先将配置中的“最大长度”调整到2048,来防止聊天返回的结果因token长度限制被截断(Amazon Bedrock UI上最大长度限制为2048 token,Amazon Bedrock API支持最大200k token)。然后,这次云实验我们让Claude v2.1大语言模型为我们规划一个“上海两日游”。输入“安排一个上海2日游的行程”,点击“运行”。

2_chat_shanghai_tour

  1. 我们可以在紫色区域,看到大语言模型返回的结果。同时,也可以在最下方“模型指标”栏目,看到我们这次模型调用的耗时、输入/输出token数量以及花费。本次云实验完全免费,不会对您产生任何费用或账单!

2_chat_shanghai_tour_result_metrics_no_arrow

  1. 下面我们先清除本次对话,点击下图所示的图标。
    2_chat_shanghai_tour_clean

  2. 接下来我们使用Amazon Bedrock为我们生成代码,输入如下prompt:

Write a short and high-quality python script for the following task, something a very skilled python expert would write. You are writing code for an experienced developer so only add comments for things that are non-obvious. Make sure to include any imports required.

NEVER write anything before the ``` python ```block. After you are done generating the code and after the ``` python ```block, check your work carefully to make sure there are no mistakes, errors, or inconsistencies. If there are errors, list those errors in tags, then generate a new version with those errors fixed. If there are no errors, write “CHECKED: NO ERRORS” in tags.

Here is the task:
A web scraper that extracts data from multiple pages and stores results in a SQLite database. Double check your work to ensure no errors or inconsistencies.

Assistant:

2_chat_gen_python_result

我们可以看到Amazon Bedrock为我们生成了带有注释的、可读性很强的代码!当然你还可以与Amazon Bedrock继续进行多轮对话来提升回答质量,或者帮您解决代码运行过程中遇到的问题,快来动手试一试!

[第五步] 使用Amazon Bedrock 生成图像

  1. 在左侧的导航栏中,选择“图像”。如同之前,我们需要先选择基础模型。这次我们选择Amazon Titan Image Generator

5_image_select_model

  1. 之后我们输入如下prompt来让Amazon Bedrock为我们生成图片,点击“运行”

a Tiger wearing glasses and eating an ice cream in Las Vegas

5_image_result_3

  1. Amazon Bedrock会为我们生成3张图片用来供我们选择。点击其中一张你认为效果最好的图片,你可以下载此图片或者继续编辑

5_image_select_result

### 如何在 AWS Bedrock 中获取模型访问权限 要在 AWS Bedrock 中成功获取模型访问权限并解决无权访问模型的问题,可以按照以下方式操作: #### 1. 配置 IAM 策略以允许调用特定模型 AWS Identity and Access Management (IAM) 是管理资源访问的核心工具。为了使应用程序能够调用特定的基础模型,需要创建一个合适的 IAM 策略来授权此行为。以下是示例策略配置[^1]: ```json { "Version": "2012-10-17", "Statement": [ { "Sid": "AllowInference", "Effect": "Allow", "Action": ["bedrock:InvokeModel"], "Resource": "arn:aws:bedrock:*::*/<foundation-model>/<model-id-of-model-to-allow>" } ] } ``` 上述 JSON 文件中的 `Resource` 字段指定了要授予权限的具体模型 ARN。如果未正确设置此字段,则可能导致无权访问某些模型。 #### 2. 使用 Amazon Bedrock 提供的功能扩展应用 Amazon Bedrock 不仅支持直接调用预训练好的基础模型,还允许用户通过微调或知识增强的方式定制化模型[^2]。因此,如果您希望获得更广泛的模型功能,可以通过以下两种途径实现: - **微调现有模型**:利用自有业务数据调整已有模型的行为。 - **训练新模型**:完全基于内部数据集构建新的机器学习模型。 这两种方法都需要额外的时间投入和技术积累,但对于满足个性化需求至关重要。 #### 3. 关于可用模型数量有限的原因分析 尽管官方宣传声称提供多种类型的高质量大语言模型(LLMs),但实际上开放给用户的选项可能较为局限[^3]。这主要是因为以下几个方面原因造成的: - 法律法规限制; - 商业合作条款约束; - 技术兼容性和稳定性考量。 这些因素共同决定了当前阶段下可供选择的实际模型种类较少的情况。 #### 4. 参考 InvokeModel API 文档完成集成工作 最后,在实际编码过程中还需要仔细阅读有关 invokeModel 方法的相关资料[^4]。下面给出了一段简单的 JavaScript 调用实例作为参考: ```javascript const bedrockRuntime = new AWS.BedrockRuntime(); let params = { body: JSON.stringify({ promptData: "Tell me about the weather today.", maxTokensToSample: 50, temperature: 0.8, topP: 0.9 }), modelId: 'anthropicsclaude-v2', accept: '*/*', contentType: 'application/json' }; bedrockRuntime.invokeModel(params, function(err,data){ if (!err){ console.log(data); }else{ console.error('Error:', err); } }); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值