利用AI创造价值:借助亚马逊AI重塑丰田供应链
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Supply Chain Transformation, Ai Models, Data Foundation, Governance Framework, Ai Adoption]
导读
通过结合人工智能、分析和数据来采用数字优先运营的企业可以获得竞争优势并实现增长。在本次会议中,了解部署能创造价值的人工智能的基本要素,并听取像Toyota这样的领先组织如何利用IBM的行业专业知识和人工智能能力来重塑供应链等关键业务领域。本次演讲由亚马逊云科技合作伙伴IBM为您带来。
演讲精华
以下是小编为您整理的本次演讲的精华。
这场演讲由Clay Sheriff开场,他表达了对出席的热情和感激之情。他介绍了Audrey Mitoux,一位负责丰田供应链和履行运营的小组经理,她正在领导丰田汽车北美公司的供应链转型。Clay提到Audrey将深入探讨他们如何利用亚马逊云科技作为这一变革性努力的基础。此外,他还介绍了Heather Gentile,一位IBM的Watson Ex Governance主管,她将阐述他们在生成式人工智能领域所设想的4.4万亿美元的商业机遇。
作为背景信息,Clay透露他从普华永道转到IBM,由于对协助客户转型业务的热情。他解释了演讲的核心是通过利用亚马逊云科技作为基础平台,重新构想丰田的供应链和履行运营。Clay强调,真正的价值不仅在于单个技术组件,而在于它们的协同整合,以推动业务转型,尤其是考虑到丰田供应链运营的巨大规模和广度。
阐明IBM和亚马逊云科技之间新兴的合作伙伴关系,Clay强调IBM已成为亚马逊云科技过去五年增长最快的全球系统集成商和独立软件供应商(ISV)。这种增长证明了他们与亚马逊云科技进行的集成工作,以及在亚马逊云科技平台上部署软件产品。他阐述了IBM的战略转移,从其历史上与大型机和专有软件相关,转向专注于混合云战略、开放系统和与行业领导者亚马逊云科技等的生态系统合作伙伴关系,这一转变为IBM和其客户带来了实实在在的利益。
Audrey随后登场,深入探讨了丰田的供应链转型之旅。她强调赋予团队成员参与有价值且令人满足的任务的至关重要性,这需要实施有助于优化工作流程而非强加僵化流程的系统。COVID-19大流行凸显了应对日益常见的快速变化的市场状况和供应链中断所需的敏捷性、响应性和灵活性的关键需求。
Audrey指出,供应链的重点发生了明显转变,从单一关注运营效率转向更加全面的方法,包括价值创造、可持续性、敏捷性、以客户为中心和持续创新。丰田这一转型的指导原则植根于以人为本、数据驱动和技术支持的理念。他们优先培养供应链团队成员的技能、专业知识、协作和福祉。此外,他们旨在优化数据利用以支持决策过程并提升整体客户体验。技术是核心支撑,丰田保持不断寻求最佳可用技术来支持其转型努力。
2020年,丰田启动了这一转型之旅,成立了一个小团队,负责确定理想的客户旅程、评估现有能力并着手进行一个以跟踪车辆预计到达时间(ETA)为重点的概念验证(POC)。到2022年初,供应链项目已经指数级扩展,包含了Audrey之前概述的所有端到端供应链要素。
与业务利益相关者、IT团队和外部合作伙伴的合作与共同创造对于丰田在这一努力中取得成功至关重要。他们采用加速器来加快开发过程,在通常需要两年的时间内就能交付成果。丰田依赖生态系统合作伙伴来确定最佳平台技术,并坚持专注于卓越交付。他们采用迭代方法,旨在大规模交付。跨职能团队快速制定假设、通过概念验证进行测试,一旦概念得到验证,即刻开始构建和交付最小可行产品(MVP)。
丰田的数字化转型的每一个方面都建立在他们的运营数字平台“立方体”之上,该平台由亚马逊云科技提供支持。Audrey强调了在立方体上交付的几个关键产品,包括管道(端到端管道可视性)、控制塔(用于监控ETA)、需求匹配、ETA预测、智能履行引擎(用于匹配客户请求)和车辆配置器。她展示了他们的端到端管道可视性产品,该产品以简单语言显示从订单到零售销售的车辆信息,取代了之前的绿色屏幕大型机系统。这一创新使管道可视性对整个组织开放,并为他们目前正在开发的AI聊天机器人提供了必要的框架。
ETA预测是另一个关键产品,他们采用人工智能和机器学习模型来估计车辆何时到达经销商处。他们仅用四个月时间就开发出初始模型,大幅提高了ETA的准确性,在某些情况下甚至翻了一番。从那时起,他们一直在完善模型,现在甚至能够在车辆投产之前就预测ETA。智能履行引擎是一个人工智能和机器学习系统,根据客户查询为他们推荐管道中的车辆,提供精确或最接近的匹配、等待时间和位置。该产品已投入生产,并被丰田和雷克萨斯网站上的客户使用。
Clay随后阐述了IBM在这一规模的项目上与亚马逊云科技合作的差异化优势和执行支柱。他强调,丰田的业务过去是被动反应的,但现在他们可以通过在数据之上利用人工智能来可视化数据、预测客户需求并使供应链变为主动式。Clay强调的四大支柱是执行与领导力、设计标准、人才和自动化(人工智能和机器学习)。他强调保持每日执行的纪律、与合作伙伴协作以及频繁发布代码的重要性,去年仅发布了500多次。
设计标准对于构建可能在全球范围内扩展的企业级应用程序至关重要,确保架构、数据、用户体验和AI运维标准得到巩固。人才是必不可少的,需要能够弥合执行、设计标准和愿景之间差距的团队成员。他们需要对愿景充满热情,并愿意质疑决策,以确保与主动、预测性供应链愿景保持一致。最后,在丰田的数字运营平台(立方体)上拥有一致的单一数据存储库,实现了通过人工智能和机器学习的自动化。
Clay提到,丰田的首席执行官Akio Toyoda亲自参与其中,并想知道他们如何利用新技术为业务、改善客户和经销商体验以及提升员工体验带来价值。亚马逊云科技被选为基础云平台,因为它具有成本节约、可扩展性和安全性。IBM和亚马逊云科技的合作伙伴关系发展良好,有新的安全公告和数千名认证从业人员。IBM正在领导将丰田从大型机迁移到亚马逊云科技的工作,反映了他们对开放生态系统的信念。
Heather Gentile随后就行业提供了背景信息,引用了McKinsey的一项研究,该研究预测生成式人工智能将对全球利润产生每年4.4万亿美元的巨大影响。她讨论了人工智能成熟度曲线,目前组织处于“Plus AI”阶段,正在尝试内部使用案例以提高效率。下一步是利用内部管理数据对模型进行微调,然后到达一个临界点,自动化成为重点,将企业工作与效率(如代码生成)相结合,例如将COBOL代码转换为Java。最后一个阶段是代理,多个生成式人工智能模型协同工作实现自动化。
Heather强调了强大数据基础、为特定用例选择合适的模型(考虑性能和成本因素)以及从用例批准到生产监控的端到端治理集成的重要性。辅助和代理可以将组织推向新的生产力高度。辅助快速支持特定用例,而代理涉及多个生成式人工智能模型协同工作实现自动化,治理确保安全性和一致性。
在讨论数据基础时,Heather强调了打破企业数据孤岛、使用混合架构跨本地和多云环境连接数据的需求。开源和集成技术对于统一和共享数据至关重要。对于模型,对话已从大型模型转向更小、高度调优、专注于特定任务(如分析、翻译和总结)的高效模型。这些模型具有较低的内存和计算要求,是经济高效且可部署的解决方案。
IBM的Granite 8B模型使用OopsInstruct Lab进行训练,展现出与类似模型相当或更优的性能,同时缩短了训练和部署时间,从而节省了成本。治理正在成为负责任地大规模采用人工智能的战略竞争优势。挑战包括监管环境(如欧盟人工智能法案)、跨利益相关方实现可见性的需求、手动流程和不一致政策的风险以及分散的工具和数据孤岛。
IBM的解决方案是利用技术跨企业统一治理,将AI治理框架付诸实施,包括自动化工作流程、利益相关者连接以及从用例请求到生产监控的端到端审计跟踪。实时警报可以检测模型性能偏差、偏差漂移、幻觉、仇恨、攻击性和亵渎内容,确保行为一致并在发生昂贵错误之前解决问题。
与亚马逊云科技的合作包括将治理集成到SageMaker中,并解决越狱、提示注入、提示污染和影子AI模型等威胁。Heather强调了IBM助手在亚马逊云科技云上的一些示例,包括Watson Assistant在巴西金融巨头Sicredi的前三个月内将客户体验提高了10%。Watson Orchestrate将Sport Clips的三小时候选人外联工作流程缩短至三分钟。Watson Code Assistant提高了花旗集团的代码创建效率62%。
未来将加速AI代理部署,从预构建的助手开始,然后将模型分组到定制代理中进行自动化,同时让人类参与审查。IBM正在投资各个领域,帮助组织沿着AI成熟度曲线前进,从Watson X基础上激活不同的构建模块。
总之,这次演讲涵盖了丰田利用亚马逊云科技作为基础进行供应链转型,重点关注以人为本、数据驱动和技术支持的原则。它强调了关键产品,如管道可见性、预计到达时间预测和基于丰田数字运营平台(立方体)构建的智能履行引擎。IBM讨论了其差异化、执行此类计划的支柱以及对AI的愿景,包括数据基础、高效模型和端到端治理的重要性。IBM与亚马逊云科技的合作以及生成式AI在各行业的潜在影响(据麦肯锡预测,每年将达到4.4万亿美元)也得到了强调,并举例说明IBM助手如何将Sicredi的客户体验提高10%、将Sport Clips的三小时工作流程缩短至三分钟,以及将花旗集团的代码创建效率提高62%。
下面是一些演讲现场的精彩瞬间:
强调构建坚实的基础架构数据、用户体验和AI运维设计标准的重要性,以实现企业级应用程序全球范围内的扩展,并通过指数级技术推动业务发展。
丰田首席执行官Akio Toyoda密切关注公司在亚马逊云科技上的数字化转型计划,重点是通过利用新技术为客户、经销商和员工创造价值。
演讲者强调向针对特定任务(如分析、翻译和总结)的更小、更高效的模型转变,这些模型可以在CPU上以较低成本部署,而不是GPU。
在不断增长的监管环境下,以欧盟人工智能法案为先导,各组织正在为遵守不同地区新兴的人工智能法规做好准备,这凸显了拥有可扩展框架的重要性。
亚马逊展示了其先进的模型监控系统,该系统可以捕获元数据、基准测试性能,并实时发送偏差或存在风险行为(如偏见、幻觉和仇恨言论)的警报,确保人工智能输出的一致性和道德性。
演讲者强调IBM正在持续投资各种人工智能能力,从Watson X基础设施开始,帮助组织提高人工智能成熟度。
总结
在这个引人入胜的叙述中,我们探讨了丰田如何利用亚马逊云科技上的人工智能重塑其供应链的转型之旅。供应链远见者Audrey Mitoux向我们阐述了指导他们转型的原则:以人为本、数据驱动和技术赋能。她揭示了一系列建立在亚马逊云科技之上的创新产品,包括端到端管道可视化、预计到达时间预测和智能履行引擎,旨在提升客户体验和运营效率。
IBM首席客户经理Clay Sheriff强调了坚实基础的重要性,包括执行、设计标准和人才培养,以充分发挥人工智能的潜力。他强调了IBM、亚马逊云科技和丰田之间的合作,并着重强调了这个项目在丰田最高领导层的重要性。
IBM董事Heather Gentile提供了更广阔的视角,展望生成式人工智能对全球利润年度影响高达4.4万亿美元。她概述了人工智能成熟度曲线,从实验到自动化和智能体,强调了数据治理、模型选择和端到端治理对于负责任地大规模采用人工智能的至关重要性。
这个叙述以一个行动号召作为结束,敦促组织拥抱未来的基石:为特定用例量身定制的助手,以及能够自主组合多个人工智能模型的智能体,所有这些都建立在健全的治理框架之上,以确保透明度、安全性和人工智能的道德部署。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。