Nissan与Snowflake打造生产级生成式AI解决方案
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Cortex, Generative Ai Solutions, Natural Language Processing, Unstructured Data Analysis, Customer Feedback Analysis, Online Review Summarization]
导读
了解企业如何从以前未开发的基于文本的数据集中提取新的洞察,并通过对话式应用使企业数据更易于访问。在本次会议中,探索如何使用Snowflake数据平台上的Cortex AI(LLM、RAG、微调、文本到SQL转换)快速构建和部署生成式AI解决方案。同时,听取日产汽车公司的分享,了解他们如何通过完全集成、受管控的数据和AI,简化从概念验证到生产的路径。本演示由亚马逊云科技合作伙伴Snowflake为您带来。
演讲精华
以下是小编为您整理的本次演讲的精华。
在亚马逊云科技 re:Invent 2024午后的时间里,Snowflake的AI解决方案架构师领导Chase Gunther登台讨论了Snowflake的生成式AI能力以及与日产的合作。Gunther承认了观众的出席并承诺将进行一场关于日产与生成式AI和Snowflake合作历程的精彩演讲。
Gunther提供了Snowflake在生成式AI领域的背景信息,强调该公司如何使客户能够构建生成式AI解决方案和应用程序,包括对话式交互应用程序和自然语言处理应用程序。他强调生成式AI正在改变我们消费和与数据互动的方式,使得能够用自然语言查询结构化数据,并为非结构化数据提供检索增强生成管道。
Gunther将Snowflake介绍为一个端到端的生成式AI和机器学习统一平台,建立在易用性、效率和可信赖性的原则之上。他解释说,Snowflake在其基础设施中原生托管了许多模型,包括与许多领先的大型语言模型开发商合作的通用完成API,如AI21 Labs、Meta和Mistral,这些模型直接托管在Snowflake中。Snowflake是LLaMA 3.2的主要发布合作伙伴之一。Snowflake还提供这些模型的无服务器微调功能,以及诸如用于自然语言到SQL生成的Cortex Analyst和用于非结构化数据检索增强生成管道的Cortex Search等功能。
Gunther强调了生成式AI对传统自然语言处理任务的影响,如从文本数据中提取关键术语、情感分析和摘要等。他演示了Snowflake如何通过基于SQL的提示简化这些任务,使客户能够定义他们的基础模型、提示和目标源表。Gunther将这种方法与从Snowflake提取数据到对象存储的替代方案进行了对比,后者会带来治理、权限和编排方面的挑战。
相反,Gunther提出了一种架构,其中文本数据被暂存在数据湖中,通过数据工程管道进行处理,然后使用SQL语句在编排工具(如dbt或Airflow)中注入大型语言模型。这种方法允许客户在Snowflake平台内跨整个管道治理数据,从原始数据到最终暴露给最终用户的预测。
接下来,日产北美数字化转型和消费者洞察主管David Terabessy登台,分享了日产与生成式AI和Snowflake的合作历程。Terabessy首先强调了过去五年汽车行业发生的前所未有的变革,这种变革是由电动化、自动驾驶、数字化转型和互联性推动的,其变化程度超过了之前20年的总和。
Terabessy讨论了消费者洞察在这个动荡的环境中发挥的作用,以及了解客户自发、未经提示的声音的重要性。他介绍了一个用例,日产利用Snowflake的Cortex AI以87%的准确率对数百万条在线消费者评论进行分类和分析,从而洞察客户情绪和体验,涵盖三大类别和各种属性,如销售人员、谈判过程和透明度。
Terabessy解释说,日产将在线评论数据引入Amazon S3存储桶,然后使用Snowpipe将其加载到Snowflake中。Cortex AI平台对数据执行情感分析和分类,使日产能够跨品牌、经销商和地区对客户体验进行基准测试。这种数据驱动的方法使日产能够识别表现出色的经销商,了解他们成功的驱动因素,并制定行动计划来改善客户体验。
Terabessy强调了使用Snowflake的Cortex AI平台的好处,包括高效处理大型数据集的能力、直观的用户界面,以及在Snowflake生态系统内将计算引入数据的优势。他提到Snowflake的平台使日产的上市时间缩短了两个月,并实现了资源重新部署。
展望未来,Terabessy讨论了日产利用Cortex AI用于对话式界面、实时产品反馈分析(使用专家、记者和消费者的在线评论生成一周内的摘要,而不是传统的5-6个月时间)以及有机品牌跟踪(了解消费者如何感知品牌属性,如时尚、创新、实用、可靠和安全,并叠加广告活动信息以衡量这些属性的提升)的计划。
Terabessy举例说明了使用Cortex AI对新日产Kicks发布的4,500条评论进行总结,突出了可以从在线评论中提取有关风格和驾驶模式等属性的详细信息和见解的水平。该摘要使日产能够重新提示并深入探讨消费者所青睐的特定方面,如他们喜欢的风格或最喜欢的驾驶模式。
Terabessy对观众的时间和出席表示感谢,并承认了活动中可供选择的众多会议。他的目标是通过分享日产利用客户的自发声音来获取新见解并在这个汽车行业变革时期对业务产生即时、显著影响的故事,使本次会议物有所值。
总之,本次会议展示了日产和Snowflake如何合作构建生产级的生成式AI解决方案,利用Snowflake的Cortex AI平台从非结构化数据源(如数百万条在线消费者评论)中解锁见解,准确率达87%。这种数据驱动的方法使日产能够了解客户情绪、基准测试体验,并制定策略提高客户满意度和品牌认知度,以应对汽车行业的快速变革。Snowflake的平台为日产提供了效率、易用性,并能够将计算引入数据,缩短了两个月的上市时间,并实现了资源重新部署。日产计划进一步利用Cortex AI用于对话式界面、实时产品反馈分析和有机品牌跟踪,从在线评论中提取见解,为产品开发、营销和品牌策略提供信息。
下面是一些演讲现场的精彩瞬间:
Chase Gunther是Snowflake公司的AI解决方案架构师领导,他介绍了自己的角色,即将AI和机器学习功能推向市场,与日产等客户合作,并建立关键合作伙伴关系,帮助他们在生产环境中实施生成式AI。
探索生成式AI在文档分析、摘要和提取方面的潜力,在传统的批处理管道中加速原本需要数月时间的项目。
Snowflake托管了来自AI21实验室、Meta和Mistral等公司的各种生成式AI模型,允许用户通过SQL和REST API在Snowflake平台上直接微调和利用这些模型。
演讲者解释了如何将大型语言模型集成到数据工程管道中,涉及到暂存文本数据、转换数据,并生成最终预测,允许无缝地将语言模型注入到该过程中。
Snowflake的CEO欢迎David Terabessy上台,讨论他们的数据管道和平台如何在汽车行业实现创新。
挖掘客户评论背后的热情和深层情感,以提升消费者体验水平。
Cortex AI分析了数千条在线评论,为日产全新Kicks车型提供了详细的消费者偏好见解,使汽车制造商能够完善产品特性和营销策略。
总结
在快速发展的汽车行业中,日产公司已采用生成式人工智能和Snowflake的Cortex平台,利用非结构化数据的力量,解锁宝贵的消费者洞见。这个故事讲述了日产公司如何利用Cortex AI分析数百万条在线客户评论,以高精度对其进行分类,并测量各种属性(如销售人员、谈判过程和透明度)的情感。
通过在Snowflake高效且直观的平台上摄取和处理这些数据,日产公司可以在品牌、经销商和区域层面对客户体验进行基准测试,识别表现出色的经销商并复制其成功驱动因素。能够快速总结和从大量有机客户反馈中提取见解,缩短了两个月的上市时间,使日产公司能够做出明智决策并提升整体客户体验。
展望未来,日产公司旨在扩大Cortex AI在对话界面、实时产品反馈分析以及通过消费者语言跟踪品牌感知等方面的应用。这种创新方法使日产公司能够应对行业动荡,在竞争激烈的环境中脱颖而出,并提供与客户需求和情感产生共鸣的规范性解决方案。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。