亚马逊云科技-分析工坊通过数据治理实现GenAI敏捷性
关键字: [yt, Amazon DataZone, Data Governance Implementation, Amazon Web Services Services Utilization, Data Ingestion Automation, Data Classification Enablement, Data Quality Assurance]
本文字数: 400, 阅读完需: 2 分钟
导读
在一场亚马逊云科技活动上,Ram Kumar发表了题为”通过数据治理实现敏捷性”的演讲。他阐释了如何利用亚马逊云科技服务实施数据治理。具体而言,他解释了亚马逊云科技服务Amazon AppFlow、亚马逊云科技Glue、Amazon Macie和亚马逊云科技Lake Formation可以自动化数据引入、分类和数据质量检查,而亚马逊云科技Glue和Amazon DataZone则可以管理数据目录。此外,亚马逊云科技Lake Formation、Amazon Redshift、亚马逊云科技Data Exchange和Amazon DataZone能够实现受控的数据共享。该演讲重点阐述了亚马逊云科技如何实现自动化数据治理、集中式数据目录管理和安全的数据共享,使组织能够在保持合规性和治理的同时,成为数据驱动型组织。
演讲精华
以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。
在数据驱动的征程中,企业面临着数据量快速增长、数据类型多样化以及数据分散化等诸多挑战。专家指出”数据正在指数级增长”,企业需要处理”各种类型的数据多样性”,包括不同的数据类型和数据流速。同时,由于数据分散在本地和云基础设施、数据湖、数据仓库等不同的数据源之间,增加了数据治理的复杂性,企业还需要”遵守安全和合规性要求”。
尽管如此,企业对于成为数据驱动型组织的渴望是一致的。专家总结了客户在这一过程中反映的三大主题:首先也是最重要的,是理解什么是出色的数据驱动;其次是确定使用案例,对其进行优先级排序,并为之制定商业案例;最后是建立数据驱动文化,填补技能或技术差距,并确保遵守合规性和治理要求。
IDC的数据显示,虽然85%的企业希望成为数据驱动型组织,但只有37%的企业真正做到了这一点。缺乏高效的数据治理被认为是制约企业成功的主要障碍,企业往往会将30%的时间浪费在数据治理方面。
专家提出,数据治理是组织用于确保其数据在整个生命周期中的质量和适当处理的”政策、流程和系统”的集合,目的是创造业务价值。数据治理的实施需要遵循一定的流程,包括确定业务战略、消费者提出数据需求、生产者准备数据资产,以及数据治理确保数据能够安全高效地从生产者流向消费者。
数据治理包括多个环节,如自动化数据注入、分类、探查、质量控制、安全存储、目录管理和数据共享等。亚马逊云科技提供了全套服务支持,如AppFlow、Glue、Glue Data Catalog、Lake Formation和DataZone等,帮助企业自动化流程、统一管理目录、实现安全可控的数据共享,从而加速数据驱动业务发展,提高敏捷性和竞争力。
总结
这篇演讲探讨了数据治理在实现组织敏捷性和成为数据驱动型组织的重要性。它强调了所面临的挑战,例如数据呈指数级增长、多种多样的数据类型,以及遵守安全和合规性要求的需求。主要论点包括:
- 明确”优质”数据治理的内涵至关重要,因为它有助于确定使用案例、确定优先级并获得赞助。
- 培养数据驱动型文化、解决技能缺口、利用适当的技术(如亚马逊云科技服务)以及确保合规性,是数据治理之旅的关键步骤。
- 亚马逊云科技服务(如Amazon AppFlow、亚马逊云科技Glue、Amazon Macie、亚马逊云科技Lake Formation、Amazon DataZone和亚马逊云科技Redshift)可以自动化数据引入、分类、质量检查、编目和受控数据共享。
总的来说,这篇演讲强调有效的数据治理对于释放数据价值并实现组织数据驱动型计划的敏捷性至关重要,而亚马逊云科技服务可以为此提供支持。它着重指出,应从明确的业务案例出发,并利用合适的工具和流程来实施健全的数据治理实践。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。