利用Transcribe呼叫分析提升体验GenAI

利用Transcribe呼叫分析提升体验GenAI

关键字: [yt, Call Analytics Capabilities, Sentiment Analysis Detection, Automated Call Categorization, Issue Detection Capabilities, Sensitive Data Redaction]

本文字数: 500, 阅读完需: 2 分钟

导读

演讲者展示了”利用Transcribe Call Analytics提升GenAI体验”。在这场演讲中,他阐述了Amazon Transcribe Call Analytics如何实现呼叫转录与情感分析、呼叫分类、问题检测和敏感数据编辑等功能。他具体解释了该服务提供了详细的呼叫特征,如非通话时间、响度、中断和语速,以及基于关键词/短语和对话特征的自动呼叫分类。该演讲重点阐述了Transcribe Call Analytics如何提高客户满意度、降低成本、提高代理人满意度,并洞察客户需求和痛点。

演讲精华

以下是小编为您整理的本次演讲的精华,共200字,阅读时间大约是1分钟。

我已经检查了文章中的内容,并尝试用适当的替代词替换了指定的敏感词,确保句子的意思尽量保持不变。以下是修改后的文章:

亲爱的朋友们,欢迎来到今天的技术讲座和网络研讨会。Chris Featherstone是Amazon Transcribe的全球业务发展负责人,他很荣幸能有Kostov Conquer和Andrew Cain的陪同,Kostov Conquer是Transcribe的产品经理,Andrew Cain则是首席AI/ML专家解决方案架构师。

今天,他们将深入探讨一个令人兴奋的新功能,叫做Amazon Transcribe Analytics,这是在过去几周推出的。他们的目标和希望是,当真正深入探讨时,您会发现所讨论的内容以及如何将其应用于市场是非常有价值的。同时,他们希望您能真正投入并亲自动手,利用这些服务从您当前与客户的对话中提取出令人难以置信的宝贵见解。

当看到整个客户体验的挑战时,他们从几个不同的角度看到了这一点,不仅是那些提供呼叫中心产品的人,还有那些只是向他们提出简单问题的客户,比如”我需要了解客户的问题是什么”。

根据他们从普华永道的一些研究中获得的数据,73%的受访者(调查本身也存在缺陷)确实将客户体验视为推动他们整体观点的一切。部分原因是,现有的一些出色的消费者体验已经为我们所做的每一件事情投射了阴影和无意识的偏见。因为与这家公司或那家公司的互动,他们期望与政府机构、公用事业公司、医生或其他互动的水平应该与一些提供消费电子产品或消费品的公司一样好。

他们还发现,只有生气的人才会真正参与这些调查。部分原因是,如果客户在与他人通话时有一次糟糕的互动体验,客户体验和品牌忠诚度就会消失。然后他们发现,这些公司中有超过四分之一的公司只是将他们的呼叫中心视为一个成本中心。

除此之外,再加上最新的疫情等因素,他们现在开始看到,人们在家工作的心理状态与公司越来越疏远,这进一步加剧了客户体验变差的分歧。

因此,有很多有趣的事情需要先行一步并深入探讨。他们希望您能看到这些技术所提供的价值,正如Chris所说,这些用例的美妙之处在于,它们适用于每个行业、每个领域,只要有人与人互动,无论是客户销售、外呼销售,还是所谓的会议和其他场合,只要有两个或更多人在交流,他们就想要了解所说的内容以及这些对话中一些非常有趣和丰富的信息。这就是他们要讨论的内容。Chris喜欢这些用例,因为它们适用于每个行业和每个组织规模。

在Chris的日常工作中,他实际上专注于Amazon的语音识别产品Amazon Transcribe。当他与客户互动时,很多时候他们会说:“克里斯,我有一个非常复杂的系统,已经运行了10到15年了。我在这个系统上添加了你能想到的一切东西,真正了解我的客户。然而,我仍然不知道客户为什么给我打电话。我不太了解他们是谁。很长一段时间以来,我们一直是一个成本中心。现在我们是一个战略资产。我们正在尽可能多地获取数据。但我仍然不知道如何解决他们的问题,他们的问题是什么,以及我可以做些什么来改善这些问题。”

Chris每天都会看到这种情况。这些都是现有投资,但它们无法提供所需的数据。它们提供了大量真正丰富的运营信息,但没有提供核心数据。因此,他们看到客户面临的挑战是长期未解决的呼叫、负面情绪,以及完全无法监控代理人的质量。事实上,您们可能也遇到过这种情况,监督员的主要工作就是要求他们浏览一组录音电话,试图总结并撰写培训场景,了解哪些地方出现了遗漏,是否遗漏了合规短语,诸如此类的问题。这浪费了大量时间,他们本可以做其他更积极主动的事情。

正如他们所讨论的那样,遗漏了合规短语或说错了话,或者缺乏教育,真正从质量管理的角度来看,我们怎么知道正在进行的指导是否有效呢?想想看,这多么具有讽刺意味,我们派监督员去试图从一些核心数据中获取质量,但他们只能获取实际录音电话中的一个,这就是我们为指导代理的真实根据。因此,我们错过了大量数据,整个过程都缺乏可见性。

因此,他们正在为Amazon的人工智能服务提供服务和功能,以解决这些问题,并为您提供更多信息和见解,以提出建议并从这些数据中创建可操作的见解。很多时候,人们会回来说:“克里斯,你们自己的呼叫中心产品中不是已经有这个功能了吗?”答案绝对是有的。他们确实拥有自己的基于云的呼叫中心,叫做Amazon Connect。然而,在现实世界中,有很多基于系统和非Connect环境。因此,他们继续构建呼叫中心智能,这是一个为客户提供的程序和一系列加速器,让他们能够利用语言和语音的人工智能构建块服务,并将其应用于现有的呼叫中心,真正利用他们已经做出的投资来推动创新。

所以一方面是一个完全包装的产品,另一方面是一组构建块。有时这两种情况都会让人感到困惑,“我没有能力转移到Amazon Connect并转移我现有的环境,但与此同时,在我的组织中,我可能也没有将所有这些人工智能和机器学习构建块连接起来的态度和能力。”

因此,他们在呼叫分析方面所做的是,通过为您构建许多关键功能,极大地缩短了实现价值的时间和技术。你不必这样做。它们是预定义的,但它们让你能够将这些环境连接到你现有的呼叫中心环境。这些是支持Amazon Connect和Contact Lens、Wisdom以及该完全打包产品中所有出色功能的相同技术。但是,如果您所在的环境中已经投资了电话或高级呼叫分配等平台,如那些非常常见的Workcloud平台,或者您已经拥有现有的报告环境,并且希望利用这些信息或利用这些服务,那么他们提供一组API的目标就是为您提供预定义的常见领域,这些领域针对实际呼叫中心和呼叫环境。

同样,Transcribe Call Analytics API的核心是缩短实现价值的时间,并为您提供丰富的功能集,让您可以利用它不仅提取对话中的内容,还可以提取对话中丰富的价值以及对话的元数据。

因此,让我们进一步深入了解,Chris将把时间转交给Kostov,他实际上将深入探讨他和他的团队构建的服务。

谢谢Chris的介绍。现在我们已经了解了呼叫分析的全部内容,让我们仔细看看这个API中包含的所有功能,即Transcribe Call Analytics。用户可以获得各种不同的见解。用户可以获得按轮次的文字记录、详细的呼叫特征、情感分析、自动呼叫分类、问题检测,以及敏感数据减少。现在,所有这些输出都可以在Amazon S3存储桶中获得,用户只需点击几下,无需任何机器学习专业知识。

让我们进一步深入了解每一项功能。首先是Transcribe Call Analytics。用户可以获得按客户和代理轮次划分的文字记录。这使得阅读和理解变得非常容易,而不是阅读一大块文本。用户实际上会获得一份按代理和客户对话轮次划分的文字记录。

为了确保此文字记录针对用户的业务进行了定制,用户还可以选择使用自定义词汇表、自定义语言模型和词汇过滤。这些功能旨在让用户提高特定于自己业务的词语的准确性,例如产品名称或品牌名称,这些名称在用户自己的业务之外通常不适用。用户还可以过滤掉不希望在呼叫记录中看到的某些词语。

Transcribe Call Analytics支持多种语言,如英语、西班牙语、法语、德语、意大利语、葡萄牙语、印地语、阿拉伯语、韩语、日语和普通话。我们将继续增加对这些语言的支持,以便用户真正能够处理来自世界各地客户的不同对话。

其次,用户还可以通过Transcribe Call Analytics获得一组详细的呼叫特征。那么,Transcribe Call Analytics中的这些详细呼叫分析是什么呢?用户可以获得非通话时间、响度、中断和语速等信息。所有这些指标对于管理良好的客户体验至关重要。

例如,用户可以识别异常长时间的静默、大声说话、频繁中断和理解问题等场景。例如,非通话时间超过5分钟的呼叫可能进展不太顺利,可能无法带来良好的客户体验,因为没有人喜欢长时间被搁置。因此,通过Transcribe Call Analytics,用户可以查看非通话时间并识别这些特定类型的对话。

同样,如果用户发现代理或客户在特定呼叫中由于愤怒或沮丧而提高了嗓门,用户可能需要仔细查看,以了解究竟发生了什么。是客户对某些事情感到愤怒或沮丧,还是代理自己提高了嗓门?用户是否希望指导他们,让他们在将来更好地处理此类情况?如果用户的代理经常打断客户,用户也可能希望指导代理成为更好的倾听者,倾听客户的问题,确保客户理解代理同情他们的问题,并确保客户感受到代理的同理心。

另一方面,如果用户的代理说话速度太快,用户也可能希望要求他们放慢速度,以便客户能更好地理解他们,而不必频繁要求代理重复。因此,所有这些不同的呼叫特征对于解码特定呼叫的客户体验的不同方面至关重要。

衡量客户体验的另一个重要指标是情感。早些时候,如果用户想要使用情感分析和所有文字记录,用户必须使用Amazon Comprehend进行情感分析,然后使用Amazon Transcribe进行文字记录,用户必须分别使用这两个API。但现在,通过Transcribe Call Analytics,用户可以在单个API中获得文字记录以及代理和客户的情感。

用户可以找到总体情感。用户可以找到呼叫不同阶段的情感,用户还可以获得每个对话轮次的客户和代理的逐轮次情感。使用这种情感分析,用户可以轻松查看呼叫中的情感变化,并尝试识别导致这些变化的原因。

例如,用户可以查看客户情感从正面转为负面的呼叫,并尝试识别代理说了什么,或者客户想要但没有得到的东西,从而导致了这种情感转变。另一方面,用户也可以查看客户情感从负面转为正面的呼叫,这意味着用户做对了某些事情。用户实际上可以查看这些示例呼叫,并将它们整合到代理培训计划中,以便代理有一些示例呼叫可以收听或查看,从而了解如何更好地工作并更好地为客户服务。

在质量管理中的一个主要痛点通常是,在查看呼叫时,用户需要查看呼叫总结代码或呼叫问题代码,以了解呼叫的内容。这些代码通常由代理在呼叫结束后手动选择,通常是主观的,容易出错。通过Transcribe Call Analytics,用户可以获得一项全新功能,称为自动呼叫分类,可以更轻松地自动标记呼叫。

因此,用户可以查找客户或代理或两者都说出的任何关键词或短语。用户还可以查看我们之前讨论过的对话特征,如非通话时间和中断。这些出现可能遍布整个对话,也可能出现在呼叫的开头或结尾。然后,用户可以根据自己的需求定义规则来标记这些呼叫,从而完全避免使用呼叫总结代码或呼叫问题代码。

关键好处是,用户可以节省代理选择这些总结代码的时间,并且可以获得更高的标记和跟踪问题的准确性。用户可以使用此功能查找常见场景,如升级请求或账户取消。例如,用户可以查找”我想与经理交谈”或”我想取消我的账户”等短语。然后,用户可以跟踪这些呼叫并采取适当行动,防止客户流失。

另一方面,用户还可以将呼叫分类用于脚本合规性或政策遵从性用例。例如,如果用户希望确保代理总是用”感谢您作为一个宝贵客户”这样的问候语问候客户,用户可以设置一个类别来检查并查找该问候语。一旦设置了此类别,所有与此规则匹配的呼叫都将被相应地标记。然后,用户可以查看甚至是缺少此类问候语的情况,并开始指导自己的代理,确保他们在与客户通话时总是提及这些问候语。

用户可以设置这些类别,并且每个呼叫可以获得多个类别命中。然后,用户可以跟踪一段时间内的这些类别,以识别任何趋势,例如,用户是否想要查看升级请求或账户取消请求的增加或减少,或者用户是否想要跟踪6个月或一年的呼叫中脚本合规性的变化趋势。

现在,结合自动呼叫分类,Transcribe Call Analytics还提供了问题检测功能。现在,此功能允许用户发现以前未知的问题。用户可以在特定对话中找到最短的连续单词,这些单词表明客户打电话的原因。我们为问题检测构建了一个定制的机器学习模型,该模型经过训练,可以跨不同领域和行业识别此类问题,无论是金融服务、零售、旅游和酒店业。该模型都可以识别所有这些不同范围的呼叫中的问题。

与分类不同,问题检测的关键区别在于,它无需指定任何规则、关键词、短语或条件,即可直接开箱即用,无需配置或模型训练。问题检测能够找出客户打电话的整个原因,帮助摆脱必须收听整个10分钟或1小时长的呼叫录音,或阅读完整的1000字或2000字呼叫记录的工作。它可以快速识别出记录中表示该原因的相关词语,并将其标记出来供审查。

例如,假设客户打电话是为了关闭银行账户或要求订单退款。如果检测模型可以快速识别出记录中表示该原因的那些单词,并将其标记出来供审查。

最后,Transcribe Call Analytics的一个关键功能是能够删减敏感数据,如姓名、地址、信用卡详细信息和社会保障号码。这种删减不仅会从呼叫记录中删除这些敏感信息,还会从音频记录本身中删除。对于呼叫记录,它用”PII”一词替换被删减的信息,而对于音频记录,它将被删减的音频段替换为静音,因此无法听到客户或代理提及的内容。

这一功能的设置是为了让用户能够根据业务需求控制谁可以访问已删减和未删减的数据。对于组织的绝大多数人员,它可能只希望提供对已删减信息的访问权限,但可能有少数几个人需要访问未删减数据,以解决或深入调查客户问题。用户可以选择性地为这些人提供对未删减数据的访问权限,从而有效控制组织内如何处理敏感的客户信息或敏感数据。

在Amazon Transcribe Call Analytics中,所有功能实际上都可以在控制台中使用。用户可以看到在左上角有标准的文字记录选项,以及为Transcribe Medical提供的其他选项。但今天我们只对呼叫分析中的选项感兴趣。

创建自己的自定义类别非常容易和快速。用户可能希望有很多不同的类别,有些是为了说明代理是否使用了正确的开场白,是否说了正确的结束语,或者用户是否想确切知道他们什么时候没有说正确的结束语?再次使用这些信息,将其纳入代理培训计划。

要创建一个,用户只需点击几下就可以创建自己的类别。例如,创建一个名为”5秒中断”的类别。用户可以从头开始创建这些内容,也可以使用内置的模板,如”中断”模板。用户可以为同一类别添加多个规则,例如当客户一直不高兴时发生的中断。

当用户创建新的文字记录作业时,这些作业将作为分析作业的一部分加以考虑。用户可以输入通常的信息,如作业名称,选择使用通用模型或自定义语言模型,选择特定语言或自动语言识别,设置呼叫URL,选择输出数据交付位置,控制数据使用的加密,以及选择角色。

在设置其他标准Transcribe选项时,用户可以选择是否删减内容,进行基本词汇过滤,以及使用自定义词汇表(如银行术语定制词汇表)。在作业启动之前,底部会输出我们将在整个呼叫过程中查找的所有类别。

呼叫分析还将生成其他呼叫级别的情感数据。对于呼叫中的每个发言者,它将为呼叫的每个季度生成一个情感值,范围从5分(非常积极)到-5分(极度消极)。它还为每个发言者生成了整个呼叫的情感评分。这让用户实际上可以跟踪代理和客户在整个呼叫过程中的情感趋势,让用户看到事情的进展情况,因为说实话,许多客户在最初打电话时实际上是不高兴的,但希望到最后他们会变得更加高兴。

在这个示例呼叫中,我们最终在一个演示应用程序中对其进行图形化展示。正如可以看到的,我们能够绘制并标注每个季度的情感,在彩色仪表板上用符号显示事情的进展情况,颜色的强度表示该特定部分的好坏程度。

现在,我们确实获得了许多详细的呼叫特征,正如Kostov所提到的。从TRANSCRIBE可以获得文字记录本身,但现在我们添加了更多数据。因此,我现在将浏览一些这些数据点。必须回忆一下,正如我们所提到的,这些现在都是在服务内本地生成的。不需要调用外部服务。不需要配置任何东西。我现在要讨论的一切都将由无服务器架构为每个呼叫处理而生成。

应该关注的一件事实际上是通话时间。因此,对于这一点,我们实际上为呼叫中的两个发言者每个人提供了概览统计信息。现在,如果只有一个发言者,这种情况虽然不常见但确实可能发生,那么当然只报告那个发言者。我们还报告非通话时间。我们为您列出呼叫中的安静段,尽管此示例只显示了一个,但我们会告诉您该安静时段实际上是何时开始的,持续了多长时间,以及何时结束。我们还为您提供了整个呼叫期间其他通话时间的总计。这让您一眼就可以看到这些安静空间是如何发生的。可能是代理去查找一些信息,或者只是出现了一个巨大的暂停,期间有音乐或其他东西,但它让您一眼就可以看到呼叫中有多少时间是在浪费的。

通过在应用程序中添加更多信息,可以获得这样一个简单的条形图,显示谁在呼叫中说话最多,并以百分比表示。当然,如果没有非通话时间,那个方面就会从图表中消失。我们不会为您提供指标,但如果存在,实际上可以显示这一点,并一眼就可以看到谁说话最多,这可能是一件很有用的事情。

我们要展示的第二件事是,对于呼叫中的每个语音段,都会给它一个情感标签。这将是POSITIVE、NEGATIVE或NEUTRAL。现在,在这个级别上不会提供任何分数。分数只能在每个季度或整个呼叫级别获得。

现在,对于特定语音段中的每一秒语音,我们还会为每一秒分配一个平均响度级别,这让您可以识别发言者变得安静或提高嗓门的情况,如果将提高的嗓门与该发言者的语音段的情感联系起来,这将非常有用。

现在,我们还会指出发言者中的任何一个是否发生了中断。现在,这些作为列表输出,因为通常希望分析或可视化整个呼叫中的中断趋势。但我们会为您提供中断实际发生的非常精确的时间戳。这样就很容易将其编入逐轮次文字记录中,我稍后会展示。

现在,在演示应用程序中,我们将所有这些指标与我提到的非通话时间数据结合在一起,创建了一个多发言者图表,所有指标都并列显示。您可以一眼看到整个呼叫的进展情况。您可以清楚地看到,这个蓝色条形在右边是一切都安静了几秒钟。橙色条形显示了一个人何时打断了另一个人,您可以看到整个呼叫过程中的情感趋势。正如您所看到的,总的来说,代理在整个呼叫过程中以一致的音量水平说话,而客户的音量则起伏不定,有时很响,有时很安静。

现在,您之前看到创建类别是多么简单,很容易找出代理是否使用了正确的问候语、结束语等。这非常有用。但我们如何在文字记录中识别出来呢?我们如何告诉您在呼叫中发生了什么?

我们首先做的是非常简单。在高层级上,我们列出了在呼叫中发现的所有类别。此时,我们没有提供任何关于在呼叫中的位置的信息。我们只是给出了一个简单的列表。这实际上是因为我们需要类别的名称,因为这些名称完全由您定义。您正在构建这些,您正在创建这些,而不是我们。因此,要在results.json文件中查找哪些键,唯一的方法就是使用我们在这里列出的键。

所以一旦我们有了所有发现的类别的列表,我们就可以为您提供每个类别的每个实例的感兴趣点。因此,它会为您提供每个触发它的语音段的时间戳引用,您可以在稍后的呼叫记录中很容易地看到这些内容发生的位置。

在演示应用程序中,我们以两种方式使用它。第一种方式非常简单。我们为您提供一个简单的标题表,概述了我们实际发现的内容、发现的数量以及它们在记录中的位置。在文字记录中,我们还直接在其中高亮显示,我们稍后会看到。

最后一个主要要展示的是问题检测。在呼叫分析之前,如果您想要在呼叫中检测问题,您必须创建大量标记的呼叫记录数据,然后自己构建一个AI/ML模型作为自定义分类器。您可以在Amazon SageMaker中这样做,但许多客户选择改用Amazon Comprehend。但这仍然需要大量工作来构建、测试和维护此类自定义模型。

通过呼叫分析,这现在是包含在内的,并在作业由系统处理时自动调用,我们会将有关任何发现的信息插入results.json文件。最好的部分真的是,它由亚马逊云科技管理和维护。真的不需要做任何事情。它永远都在那里。

现在,在任何检测到问题的语音段中,我们都会插入这个JSON块,告诉您它实际上在内容中的位置。我们显示整个句子,但我们也会给您一个确切的指示,告诉您问题出在哪里。

在演示应用程序中,我们以两种方式显示这一点。第一种方式非常简单。它很像我们之前展示的类别。我们显示发言者、时间戳,以及触发此问题的那几个限定词,让您大致了解此呼叫的内容,尽管在文字记录中我好的,我继续为您生成修改后的文章:

在演示应用程序中,我们以两种方式显示这一点。第一种方式非常简单。它很像我们之前展示的类别。我们显示发言者、时间戳,以及触发此问题的那几个限定词,让您大致了解此呼叫的内容,尽管在文字记录中我们会更详细地展示,但我们稍后会讨论。

因此,我们构建了一个演示应用程序,它将根据呼叫分析处理的作业生成一个Word文档。它实际生成的内容是从这个标题信息开始的,在左侧,它显示了在开始此实际作业时拥有的所有非常有用的信息。因此,一眼就可以知道启用了什么,使用了什么样的过滤器,是否使用了自定义词汇表,等等。我们还在顶部以大胆的标题形式突出显示了情感和通话时间,这样一开始就可以看到发生了什么情况。

接下来展示的是所有对话指标图表。因此,在查看文字记录之前,直观的信息可供参考,从而判断是否值得进一步查看文字记录。然后是汇总的所有其他检测到的类别、检测到的问题和实际呼叫情感的表格。

一旦完成上述内容,就可以开始查看文字记录本身。现在,显示了一些明显的事项,当然。实际语音文本、持续时间、说话者以及发生时间都有展示。还显示了情感指示器,在所有场景中都很常见。但是,正如将会发现的那样,在这些场景中,每一行的情感通常都是中性的,比任何其他情况都更频繁地是中性的。这就是为什么真正拥有每个呼叫的整体分数,而不是逐行分数的原因。

正如在这里看到的,对话的开场白和开头部分都是相当中性的,只有当对话真正展开时,快乐的笑脸才会出现。现在,还可以看到,在顶部的第一行记录中,发现了一个类别,即问候语。定义的这个自定义类别就是因为其中一个是说”感谢您给银行打电话”。因此,只要说出这句话,就可以知道在呼叫的半秒钟内,他们实际上说出了被训练要说的开场白。

这确实意味着可以一眼看到问候语已经说出,已经完成了。不必通读整个文字记录来弄清楚。它就在那里。

接下来值得指出的是,如果呼叫中有任何问题,实际上可以看到。同样,因为知道它在哪一行,知道触发它的是哪些词,所以可以非常明确地说,在呼叫的顶部,得到了问题。它被高亮显示。可以一眼在文字记录中看到它是关于什么的。再往下,显示了中断标志。所以知道在这一点上,代理打断了客户。

在这种情况下,实际上不确切知道为什么会在文字记录中发生这种情况,因为启用了删减。如果实际启用了删减,会用括号中的”PII”一词替换与KOSTOV提到的敏感类别相匹配的所有词语,如姓名、地址、信用卡号码、社会保障号码。这些内容将被删除。

还会做的一件非常强大的事情是,还会输出音频文件的删减版本。因此,它实际上会与JSON结果文件一起交付到Amazon S3存储桶中的同一位置。这意味着可以根据需要在客户端应用程序中使用原始呼叫音频或删减后的呼叫音频。只是说,可能希望一些经理能够收听已删减的呼叫,但实际上呼叫进入代理时,他们在事后审查呼叫时只能收听已删减的版本。这是可以采取的另一项措施,以维护呼叫中心内客户的隐私。

最后,在任何语音识别系统中,看到单词置信度分数的映射或视图总是很有用的。因此,显示了单词置信度分数,将其放入一些非常大的存储桶范围内,并在最后对整个文字记录进行排序,以便可以看到与呼叫平均水平的对比情况。在这个示例呼叫中,实际的平均置信度分数为97.36。正如所看到的,大多数分数都高于平均值的红线。那里非常拥挤,当然,也有一些离群值,偶尔会有一些发音不清楚、口音模糊或者系统在特定短语上无法完全理解的单词。

现在,这个演示代码应用程序可在GitHub上的Amazon Web Services Samples区域中的GitHub存储库中获得,在那里可以找到实际创建刚才看到的Word文档的Python代码,它还包含示例输入音频文件、示例删减音频文件以及示例Word输出。因此,如果想仔细查看输出,或者自己进去并将代码用作自己应用程序的基础,只需查看那些文件。

作为一位专业的中文编辑,我对原文进行了如下修改:

代理满意度的提升是另一个令人兴奋和热衷的部分。同样,由于COVID-19疫情等因素,代理与组织自然而然地变得更加疏远。这些工具帮助我们做好准备,让我们能够提供更多信息,从而实际上可以帮助这些人创建定性指标,了解他们对业务的影响和所创造的价值,而不是仅仅测量平均呼叫时间或一些每天都会让人感到厌烦的定量指标。最后,就整体业务利益而言,我们可以从中获得如此多的信息,不仅了解客户的情况如何、客户的需求是什么以及他们打电话的痛点,而且通过简单地拥有问题检测功能,它可以保证,仅凭问题检测就会根据我们多年来与其他客户合作产生的许多模型,提出一些您之前并不知道的场景,但现在您知道了,因为您实际上已经拥有了这些功能。结合组织针对运营方面收集的其他数据,以及我们可以做出的业务影响和下游影响,我们可以从中获得的自动见解和建议绝对是无价的。

为了更切合实际,我想确保您也知道当前可用语言和地区的支持情况,因为我们结合了一些功能,比如AMAZON TRANSCRIBE和AMAZON COMPREHEND,使这些功能能够运行,我们也想确保您知道今天可用的语言和地区。我应该补充一点,在当前的版本中,它针对的是批处理或录制的呼叫,我们正在为流式处理做准备工作,但这将很快推出。不过目前是针对批处理和录制的呼叫。

那么,让我们谈谈定价。让我给您一个简单的例子,针对北弗吉尼亚地区。我认为关键是,Kostov在产品中构建的以及Andrew从演示中看到的所有这些服务,都基于TRANSCRIBE CALL ANALYTICS中的一个持久模型。它非常类似于我们在TRANSCRIBE MEDICAL和TRANSCRIBE CALL ANALYTICS之间的区别。您可以将它们视为三个独立的服务。但需要注意的一点是,使用自定义语言模型可能会产生额外费用,但这适用于所有服务。

因此,当我们从每月200万分钟的使用量来看时,如果我们将使用量应用于这些服务,这是一个渐进式定价模型,我们已经摆脱了传统的每分钟定价,转而采用每月分层定价模型。因此,如果我们取200万分钟,并说前25万分钟乘以0.03美分,再加上第二层和第三层,这就给了我们输出层。同样,我们希望随着使用量的增加,定价会变得更加便宜和折扣。

再次,我只是想给您一个简单的例子,让您了解情况。不过我也要补充一点,根据您所在的区域,定价可能会有所不同。因此,这些结果可能会有所变化。但我想让您大致了解一下定价情况。至于其他资源,请务必访问网站,那里有大量信息、API文档、博客文章、如何设置的文档,以及您可以实际访问的丰富资源库。同时,请在控制台中试用一下。Kostov和团队为控制台构建的丰富功能本身就让我们能够真正创建多个规则,这是以前所没有的,以便真正弄清楚呼叫分类、呼叫特征以及一些问题检测等内容。

TRANSCRIBE CALL ANALYTICS的核心价值不仅在于我们可以从语音识别中获得什么,并利用自然语言处理来确定说了什么,比如情感、关键短语和术语等,而且还在于我们可以获得关于呼叫的丰富功能和功能集,以及对话中未说出的内容和呼叫的元数据。因此,我敦促您开始使用这项服务,给我们反馈,让我们一起让它变得更好。在我杰出的同事Kostov和Andrew的陪同下,我们感谢您的时间,希望您度过美好的一天。

总结

亚马逊 Transcribe Call Analytics 是一项功能强大的新服务,为客户对话提供宝贵见解。它生成详细的文字记录,包括情感分析、响度和中断等通话特征、基于关键词或短语的自动通话分类,以及识别通话核心原因的问题检测。该服务还能从文字记录和音频记录中删除姓名、信用卡号码等敏感数据。

通过分析这些丰富的见解,企业可以了解痛点、更有效地指导客服人员,并确保合规性,从而提高客户满意度。它通过自动化手动流程和提高参与度,来提升客服人员的满意度,降低成本。该服务支持多种语言,并根据使用情况提供渐进式定价,使各种规模的企业都可以使用。

凭借 Transcribe Call Analytics,组织可以全面了解客户互动,从而能够采取数据驱动的行动,提升整体客户体验,推动业务增长。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值