亚马逊云科技-构建可扩展可定制GenAI语言翻译解决方案
关键字: [yt, Language Translation Solution, Machine Translation Customization, Human Review Workflows, Active Custom Translation, Translation Memory Management]
本文字数: 500, 阅读完需: 2 分钟
导读
在一场亚马逊云科技活动上,演讲者介绍了”构建可扩展和可定制的GenAI语言翻译解决方案”。演讲者阐述了如何利用亚马逊云科技AI服务构建一个可扩展和可定制的语言翻译解决方案。该解决方案采用Amazon Translate进行机器翻译、Amazon Augmented AI (A2I)用于人工审阅工作流程、亚马逊云科技Lambda用于无服务器计算,以及Amazon S3用于存储。演讲重点介绍了这一解决方案如何实现高效的内容本地化、多语种沟通和跨语种的文本/媒体分析,同时通过持续学习降低成本并提高翻译质量。
演讲精华
以下是小编为您整理的本次演讲的精华,共200字,阅读时间大约是1分钟。
我已检查文章内容,并重写了包含敏感词的句子,确保不出现指定的敏感词。以下是修改后的文章:
亚马逊云科技 - 构建可扩展可定制的 GenAI 语言翻译解决方案
这是一场关于如何利用亚马逊云科技(亚马逊云科技)构建可扩展和可定制的人工智能语言翻译解决方案的演讲视频。演讲者 Mayank Tucker 是 亚马逊云科技 的解决方案架构师,他与 Watson(亚马逊 Translate 产品经理)和 Paddy Gaves(亚马逊云科技 专业服务企业服务经理)一同分享了这个解决方案。
市场趋势显示,语言服务和技术市场将从 2018 年的 460 亿美元增长到 2025 年的 650 亿美元,年复合增长率为 7%。全球社区正以极快的速度相互联系,尽管英语是世界上使用人数最多的语言,但超过 50% 的在线搜索查询使用的是非英语语言。80% 的在线买家更喜欢个性化体验,超过一半的人更喜欢使用自己的语言。55% 的买家如果无法使用自己的语言就不愿意购买。这为语言翻译服务的需求增长铺平了道路。
影响语言翻译行业的四大趋势是:
- 由于实现国际覆盖范围变得更加容易,对非英语语言的需求也在增加,因此对语言转换服务的需求正在快速增长。世界上有超过 6,500 种口语,其中 2,000 种只有不到 1,000 名说话者,这使得大规模找到愿意、熟练且了解特定领域的人工翻译员变得非常困难。
- 机器翻译后编辑(MTPE)已成为 2020 年的主要趋势。越来越多的证据表明,先由机器翻译,然后使用 MTPE 服务改进结果,比从头开始翻译要快得多,因此更加经济高效。
- 当前的翻译方法通常耗时耗力且成本高昂。
- 这实际上引导我们深入探讨所面临的机遇。
目前,语言服务市场由语言服务提供商(LSP)主导。这些 LSP 雇佣人工审阅员,这是昂贵、手动、耗时且不一致的。一些 LSP 确实使用人工智能解决方案,但这些人工智能解决方案往往支离破碎、昂贵,而且 LSP 会锁定翻译记忆,使客户创新变得困难和昂贵。隐私、处理时间和合规性对于诸如生命科学、法律、金融等受监管行业而言是额外的顾虑,这构成了主要的采用障碍。最后,领域自适应翻译服务被证明是一种更加经济高效的解决方案,适合那些希望将机器翻译作为本地化策略的一部分进行调查的公司。
为了以真正以客户为中心的方式解决这些挑战,亚马逊云科技 创建了一个基于无服务器原生 亚马逊云科技 人工智能服务构建的人工智能辅助解决方案。
这个人工智能辅助机器翻译解决方案是一个无服务器、按使用付费的解决方案,构建于以下 亚马逊云科技 服务之上:
- Amazon Translate,这是一种神经机器翻译服务,可提供快速、高质量、经济实惠且可定制的语言翻译。
- Amazon Augmented AI(A2I),这是一种机器学习服务,可以轻松构建所需的工作流程,以对任何机器学习输出进行人工审查。
- Amazon Lambda,一种无服务器事件驱动计算服务,可让您运行代码而无需配置或管理任何服务器。
- Amazon S3,这是一种对象存储服务,提供行业领先的可扩展性、数据可用性、安全性和性能。
演讲将深入探讨 Amazon Translate 和 Amazon Augmented AI(A2I)。
Amazon Translate 是一种神经机器翻译服务,可提供高质量、经济实惠且可定制的语言翻译。神经机器翻译是一种语言翻译自动化形式,它使用深度学习方法来提供准确、符合上下文且流畅的翻译。所谓流畅是指翻译输出的词语听起来就像是由母语人士编写的一样。准确性是指被翻译的内容的语气和材料是正确的。符合上下文是指翻译时使用的词语选择取决于该词出现的上下文。例如,单词”BACKUP”可以表示帮助或支持,比如警察的”backup”,也可以表示计算机文件的备份副本。
Amazon Translate 允许您使用主动自定义翻译功能对翻译进行定制,而无需构建自定义翻译模型。您不需要任何特殊专业知识。这正是演讲将着重探讨和深入讨论的功能。最后,Amazon Translate 是安全且易于使用的。您可以轻松使用多个 SDK、CLI 和控制台开始使用。在最近的第三方评估中,Amazon Translate 被评为机器翻译服务提供商。不仅如此,Amazon Translate 定制输出的能力使您能够更好地控制翻译质量,并根据需求构建机器翻译输出。
Amazon Translate 提供了各种功能,可以更有效地实现全球化本地化。Amazon Translate 提供广泛的语言支持,目前支持 71 种语言、4,970 种不同的语言翻译组合,并且还在不断增加。Amazon Translate 具有超低延迟。亚马逊的 Alexa 使用 Amazon Translate 来回答和翻译问题,如果问题所用语言无法获得答案。数据安全性很重要,您完全拥有您的数据所有权。您可以加密数据,上传到网络的材料在传输和存储时都是加密的。您可以更好地控制谁访问了服务和数据。Amazon Translate 在 17 个不同的 亚马逊云科技 区域提供服务,这意味着如果您有数据驻留要求,您可以更好地控制翻译发生的位置。
如前所述,Amazon Translate 是可定制的。有两种定制方式。一种是定制命名实体,例如,Watson G. Sreewardson 这个名字,可以更好地控制它在其他语言中的翻译或书写方式。可以使用自定义术语来实现这种控制。另一种是主动自定义翻译,您可以更好地控制机器翻译输出的语气、风格和词语选择。Amazon Translate 有同步模式和批量模式两种模式,同步模式下翻译以毫秒为单位返回,批量模式下只需一个 API 调用就可以批量翻译大型存档。Amazon Translate 目前在 11 个领域接受过训练,并且还在不断增加。最后,Amazon Translate 的优势之处在于您只需为实际翻译的内容付费,没有许可费、训练费或入门费。如果您不翻译,就不会产生任何费用。
在2020年11月,亚马逊推出了Amazon Translate主动自定义翻译(ACTIVE CUSTOM TRANSLATION)。主动自定义翻译是一种机器翻译定制类型,可让用户更好地控制机器翻译输出的词语选择、风格和语气。例如,如果要将西班牙语”como estas”翻译成英语,用户可以选择将英语输出设为”how are you”或”how do you do?“的方式是提供平行数据。平行数据是通常在用户的领域内正确翻译的高质量翻译示例。在运行时,Amazon Translate会读取并遍历这些翻译示例,提供定制的翻译输出。这些翻译示例、平行数据可以是用户的知识产权。使用Amazon Translate,用户可以通过这种方式构建自己的知识产权。两个使用Amazon Translate的人可能会得到完全不同的翻译输出,这完全取决于他们用于增强翻译输出的平行数据类型。
接下来介绍的服务是Amazon Augmented AI(A2I)。Amazon A2I让用户可以根据特定需求,将人工审查纳入机器学习应用程序。用户可以轻松地将部分或全部预测发送给人工进行审查和采取行动。这有助于定期评估用户的机器学习模型,并保持在高度监管行业中的良好性能,在这些行业中需要合规性或合规性很重要。用户还可以将任何输出或预测路由到人工进行审查。
Amazon A2I通过提供丰富的预构建工作流程和用户界面,有助于缩短上市时间。亚马逊将继续在这一领域进行改进和创新。Amazon A2I提供了多种人工劳动力选择用于审查,用户可以从私人、众包和第三方供应商劳动力中进行选择,将在下一张幻灯片中详细介绍。
Amazon A2I完全基于API驱动,可以轻松集成到用户的自定义ML中,无需任何机器学习经验。最后,A2I可以释放用户的人力团队,让他们专注于更有价值的任务,而将非差异化的繁重工作外包出去。
Amazon A2I支持多种人工审阅员选择。用户可以使用自己的私人审阅员团队进行内部审阅工作,特别是在处理需要保留在组织内部的敏感数据时。如果用户希望扩大到更多审阅员,并且用户的数据不包含机密或个人数据,用户可以通过Amazon Mechanical Turk获得全球50多万名独立承包商组成的7x24小时按需劳动力。Mechanical Turk是一个云众包市场,可将用户的审阅工作与分布式劳动力相连接,他们可以虚拟地执行这些任务。或者,用户也可以通过Amazon Marketplace使用第三方供应商劳动力。这些供应商经过亚马逊云科技预先筛选,可提供高质量的审阅并遵循安全流程。亚马逊云科技 Marketplace提供了相关详细信息,包括定价和客户评论,以帮助用户选择最佳供应商。
在这个示意图中,我们展示了Amazon A2I的工作原理。在这里,我们将Amazon Translate作为第2点所示的Amazon Web Services AI服务。当用户有要翻译的材料时,客户端会发送输入数据。例如,假设这里的输入数据是”como estas”。Amazon Translate会将”como estas”翻译为”how are you”。如果翻译所在的领域不需要高度审查,或者假设机器翻译质量非常高,则会通过第3步将”how are you”提交给客户端应用程序进行进一步处理。如果需要人工审查以保持更高标准或满足监管要求,用户可以通过第4步启用Amazon A2I,让人工审查翻译输出”how are you?“。这个人可以更新”how are you?“并将其改为”how do you do?“。在第6步中,用户可以构建这个知识产权。”how do you do?“将存储在Amazon S3中,并反馈给Amazon Translate供下次使用。因此,下次”como estas”出现为输入时,Amazon Translate会学习并将其翻译为”how do you do?“,然后将输出发送给客户端应用程序。
好的,谢谢。现在我们已经了解了解决方案中的核心服务,让我们深入探讨如何构建这个解决方案。我想从展示我们所谓的飞轮开始。这基本上是一个示意图,试图向用户展示我们如何计划构建解决方案。
从左侧的第1步开始,我们将利用Amazon Translate生成初始翻译。这无疑可以帮助客户节省时间和成本,获得可用于后期编辑的初始翻译。第二步,我们将尝试根据用户的要求将部分或全部输出推送给人工团队进行审查。许多客户需要这一步来控制质量、提高标准或满足合规性目标。
第3步,我们利用Amazon Augmented AI捕获后期编辑,这将作为翻译记忆。请记住,如前所述,翻译记忆属于客户。因此,用户可以开始构建自己的知识产权,并随着时间的推移在未来的输出中保持一致性。用户可以定期将所有这些翻译记忆推送到Amazon Translate,并利用ACTIVE CUSTOM TRANSLATION功能来改进翻译。这无疑可以帮助用户随着时间的推移改进翻译,并有可能降低人工干预,创造出更好的总体拥有成本和更高的一致性。
如果我将这个概念付诸实践并制定一个流程图,它将如下所示。从左下角开始,假设与现有业务系统交互的用户希望利用这个解决方案。他们与业务系统交互,该系统可以连接到解决方案,文件可以提交进行翻译。解决方案的第一步是将传入文档分解为句子。我们这样做的原因是,如果我们试图翻译整个页面并在那个级别捕获后期编辑,就太粗糙了。如果用户试图在单词或短语级别捕获后期编辑,又太细微了,我们发现将其分解为句子级别是产生理想输出的更可取的解决方案。
一旦我们获得了这些句子,我们就将它们通过机器翻译解决方案进行批量翻译,在这种情况下可以是Amazon Translate。获得翻译后的句子后,我们将它们呈现给人工团队以捕获后期编辑和他们可能做出的任何更改。这些捕获的编辑(即翻译记忆)可以定期反馈给机器翻译解决方案,从而随着时间的推移不断改进其输出。
一旦人工团队对输出感到满意,便进入下一阶段,即利用捕获的后期编辑和机器翻译所提供的译文来重建输出文档。同时还需确保保留格式,因为这对视觉认知非常重要,以便使用Word文档或实际的Excel电子表格和PowerPoint演示文件的客户在输出时获得相同的格式。完成后,将记录发送回请求整个流程的业务系统。
那么,使用亚马逊云科技组件,这个流程是怎样的呢?传入的文件可以存储在Amazon S3存储桶中,作为原始存储。系统使用S3通知并调用Lambda函数,该函数获取传入的文档、将其分解为句子并传递给Amazon Translate。一旦从Amazon Translate获得输出,系统就会获取这些文档并调用Amazon A2I服务的启动人工循环API。启动人工循环API基本上会创建一个人工审查,并将该任务推送给一个人工团队进行审查。人工使用Amazon Augmented AI提供的UI(或者可以创建自定义UI,如果愿意的话),并将后期编辑保存为翻译记忆到其中一个S3存储桶中。
从那时起,根据客户希望使用的频率(可能是每周或每季度),就会定期更新Amazon Translate以改进翻译。一旦Amazon Translate了解自定义翻译输入,它就会在下次预测时使用该自定义翻译,从而改进输出。一旦正确捕获了后期编辑,系统就使用另一个Lambda函数进行文档重建,并将最终输出提供到第三个S3存储桶中。所有这些操作都由Amazon CloudWatch进行监控,系统使用Amazon CloudWatch中的指标来监视解决方案。
如果注意到解决方案的功能,可能已经注意到这是一个完全无服务器、按使用付费的解决方案。它利用Amazon Translate,可以访问超过4,900种语言对,提供高质量的翻译。该系统是事件驱动或批量驱动的,可以轻松插入到现有系统中,因此为客户提供了一种利用现有投资的方式。它支持Word文档、PowerPoint、Excel电子表格、HTML文档和纯文本文档,并保留格式。它使用Amazon Augmented AI及其提供的所有功能来安全地驱动人工审查并捕获翻译记忆。最后,它使用Amazon Translate的主动自定义翻译功能来捕获生成的翻译记忆,并随着时间的推移发展翻译模型。翻译一页的成本约为19美分,这个成本是基于每份文档3,000个字符以及1TB的S3存储和相关的Amazon Lambda成本计算的。
现在我们已经看到了这个解决方案,让我们来看看它适用于哪些用例。我们看到这个解决方案可以解决三个重要用例,解决了这三个主要支柱后,任何组织都可以真正成为全球化。第一个是内容本地化,或者称之为一对多。这使得组织的面向全球。本地化核心资产,如零售产品描述和客户评论、媒体库、现场照片、学术研究和新闻文章,用于全球出版。
第二个是多语种通信或多对多。员工、客户和消费者都更喜欢用自己的语言进行沟通,实现这一点可以减少摩擦,增加协作和留存,当然也可以让客户感到高兴。
最后是文本或媒体分析,或多对一。如今,组织收集和分析大量数据,有时是为了共享或驱动数据驱动的应用程序,如个性化新闻源或法律/金融发现应用程序。一个真正全球化的组织每月要本地化数十亿字,今天我们将看看他们是如何做到这一点的。
谈到本地化,人工翻译团队很难跟上动态或实时内容。使用Amazon Translate,可以轻松实时翻译大量用户生成的内容。网站和应用程序可以通过点击”翻译”按钮,自动以用户首选语言提供诸如Feed故事、个人资料描述和评论等内容。
Amazon Translate可以为应用程序提供自动化翻译,实现跨语言用户之间的通信,方法是在聊天、电子邮件、帮助任务和工单应用程序中添加实时翻译。讲英语的代理或员工可以与使用多种语言的客户进行沟通。使用Amazon Translate,不会受到语言障碍的束缚。
了解品牌、产品或服务的社交情绪,同时监控不同语言的在线对话,只是可以实现的一些用例。只需将文本翻译成英语,然后使用Amazon Comprehend等自然语言处理应用程序,即可分析多种语言的文本内容。自然语言处理解决方案分析的输入文本来源于外语,基本上会转换为英语以进行下游处理。
在这个全球化的世界里,文档有多种语言。客户使用Amazon Translate将各种语言的文档翻译成感兴趣的语言,在美国可能是英语,在其他地区可能是其他语言。
Delivery公司于2021年6月开始与亚马逊云科技和专业合作伙伴Voice Foundry合作,评估Amazon Translate,然后部署了一个集成解决方案,该解决方案使用Amazon Connect和Amazon Translate实现了可扩展的实时代理聊天,并内置了多种语言之间的自动双向翻译。他们能够将本地化率提高到83%,并将客户的平均呼叫处理时间缩短了20%。
另一个例子来自Causality Link。Causality Link独特地使用Amazon Translate和机器学习(尤其是本体论)与传统人工智能的融合,允许他们为客户提供一种自然语言处理驱动的工具,利用来自世界各地的新闻和信息指导投资决策。他们每月能够处理超过5亿个来自24种语言的新闻条目,为驱动投资决策的新闻和信息提供动力。使用Amazon Translate,他们能够获得高质量、高容量的翻译解决方案,并使他们能够专注于对英语的最佳解释。
我想让Paddy,我们的企业服务经理,进一步谈谈专业服务是如何在这方面为客户提供帮助的。Paddy,现在轮到你了。
谢谢你,Mayank。我是来自专业服务部门的Paddy Gaves,我很高兴与大家分享我们如何与一家客户合作实施Mayank和Watson与大家分享的人工智能辅助翻译解决方案。
这位客户是一家大型生命科学机构,每年在全球范围内需要处理超过50万份我们称之为”不良事件报告表”的文件。一旦有人在服用他们的产品时出现与产品可能相关的意外症状,便会向制造商报告不良事件。客户必须遵守严格的监管要求,要求及时审查这些报告。由于这些事件是以发生国家的本地语言报告的,因此这些事件必须翻译成英语供制造商审查。如之前所述,从历史上看,这主要是通过手动方式,外包给使用昂贵人工翻译员的第三方完成的,导致延迟和不一致性。
在这个项目中,我们与客户合作设计了一个解决方案,帮助他们加快整个翻译过程,从几天或几周缩短到几天或几小时(取决于文档量)、减少人工操作可能导致的错误,并改善特定领域的语言翻译质量,从而减少人工审查时间。
可以看出,这位客户面临着一些挑战。我们的目标是自动化初始翻译,就像您在之前分享的飞轮和解决方案描述中看到的那样,以及人工验证工作流程,以加快文档的可用性和监管报告。
除了之前分享的飞轮和解决方案描述之外,这里还有两个具体挑战。一是我们谈论的是复杂的PDF文档,需要保留格式;另一个是这是一个受监管的工作负载,包括一些增加的审计要求。但是您可以看到,对于这位美国生命科学客户,他们有15天的时间来报告大多数事件。一切都是及时敏感的。翻译后的文档可用性是执行监管审查所必需的,而手动文档翻译则耗时且成本高昂。我们估计,对于这位客户来说,每年翻译超过50万个事件(约35亿个字符)的成本高达1000万美元。而且由于分散的手动工作,结果也是不一致的。
因此,解决方案应该与您之前看到的飞轮非常匹配:我们使用Amazon Translate执行初始翻译;我们将翻译后的输出路由到熟练的审阅员那里,使用Amazon A2I;我们捕获并应用来自人工审阅的反馈或后期编辑,不断改进这些翻译的质量和准确性;随着时间的推移,我们正在使用我们讨论过的ACT功能;除此之外,我们还开发了一个丰富的用户体验,以高效地管理和执行文档翻译。所以今天我要展示的是我们构建的界面,用于处理这些翻译。
对于这位客户,我们的结果是:集中了文档翻译,减少了延迟,并提高了工作负载和工作团队之间的可见性。他们实际上是从使用私人工作团队开始的。我们讨论过A2I的各种工作团队,将来可能会使用供应商工作团队。我们自动化了翻译和工作流程,减少了人工依赖和错误。我们简化了界面,用于审查和编辑这些翻译后的文档,同时保持高度的监管严格性和审计历史记录,并保留这些编辑以发展特定领域的学习模型。
让我向您展示这是什么样子的。我们与客户深入合作,进行了传统的亚马逊云科技研讨会和反向工作,以制定一个适合他们的用户界面。他们确实希望有一种并排的体验,可以在保留格式的同时审查源文档和翻译文档。您可以看到,这里有一些内容。您可以看到这是一个A2I任务。我们正在创建一个案例ID,并使其可搜索,以便您始终可以返回到您正在查找的文档。您可以看到我们正在查看第1页,共3页,并且可以使用一些预设的缩放功能进行导航。这些文档是同步的,它们在用户界面中是同步的,这样用户就可以在任一语言中翻页,但有效地确保翻译文档是连贯的。他们能够在任一窗格中选择并使用您在这里看到的编辑器编辑相应的条目或文本块,您可以看到黄色高亮显示已对文档进行了更改。当某些内容被上下文化时,它实际上是一个蓝色框。我们在这里设置了一个辅助工作流程,因此初始审阅员做出一些更改后,他们会保存这些更改并请求二次审阅。在这里您可以看到有哪些更改,您还可以看到一些高亮显示。另请注意,这里包含了审计信息,谁上传了文档以及何时上传的,以及预设的缩放级别。正如我之前提到的,二次审阅是我们在这里实施的一个特殊要求,您在下一个屏幕上看不到,但底部有一个提交按钮,当您完成文档时可以点击。
所以在这里您可以看到,我们为同一界面添加了一个公共文档,这是对一个较长文档的测试。这个文档有39页,因此您可以看到用户有一个页面视图。对于这位客户来说,真正重要的是能够逐页导航,然后点击他们想要编辑的内容,而不是逐行审查每一个翻译。因此,我们真好的,我将继续生成修改后的文章:
所以在这里您可以看到,我们为同一界面添加了一个公共文档,这是对一个较长文档的测试。这个文档有39页,因此您可以看到用户有一个页面视图。对于这位客户来说,真正重要的是能够逐页导航,然后点击他们想要编辑的内容,而不是逐行审查每一个翻译。因此,我们真正希望这种阅读体验对用户来说感觉良好。他们只是简单地翻页阅读,在需要编辑的地方停下来,然后继续审阅文档。
通过这些,我们将继续下一步。我希望您今天喜欢这场技术讨论。我想与您回顾一下,如果您有兴趣了解更多信息,我们可以如何提供帮助。
如果您有兴趣了解更多关于构建今天看到的这种解决方案的信息,有几种方式可以帮助您入门。首先是联系您的账户团队或亚马逊云科技解决方案架构师,了解您正在做的工作。亚马逊云科技专业服务也可以帮助反向工作,了解您试图构建的内容,并帮助建立概念验证或定制解决方案,具体取决于您的用例。
如果您想自己开始,也有可用的资源可以帮助您。第一个是关于”使用Amazon Translate和Amazon Augmented AI设计人工审查工作流程”的这篇博客文章。您可以在这里看到,以及一些可供您自己使用的示例代码。
这就是我们今天的演讲内容。感谢您的加入,希望您喜欢。我们现在有一些时间进行问答环节。
内容本地化、多语种沟通以及跨语种文本/媒体分析等领域,亚马逊翻译服务已被多家客户采用,展现出降低成本和提高效率的能力。该服务结合了人工智能和人工审查,旨在以更高效、经济和一致的方式解决语言翻译的挑战。
亚马逊云科技(亚马逊云科技)专业服务团队与一家生命科学客户合作,为其每年50多万份不良事件报告构建了一个定制的翻译解决方案,大大加快了处理速度、减少了错误,并提高了监管合规性。
总的来说,亚马逊翻译服务是一个有前景的解决方案,它展示了亚马逊云科技在构建可扩展和可定制的通用人工智能(GenAI)解决方案方面的能力。
总结
- Amazon Translate 提供高质量、可定制的神经机器翻译服务,覆盖 71 种语言,并通过主动定制翻译功能来控制风格和语气。2) Amazon A2I 促进了安全的人工审查工作流程,可选择私人、众包或第三方劳动力。3) 该解决方案自动化了翻译过程,降低了成本,并通过纳入人工反馈,实现了构建领域特定翻译模型的能力。
总的来说,该解决方案强调了帮助组织真正实现全球化的能力,通过高效的内容本地化、多语种沟通和跨语言文本分析。它强调了现实世界中的使用案例,并鼓励通过亚马逊云科技资源和专业服务来探索该解决方案。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。