利用数据湖和专用存储 GenAI数据发挥作用
关键字: [yt, Amazon SageMaker, Data Lake Architecture, Purpose-Built Data Stores, Unified Data Access, Centralized Data Governance, Machine Learning Integration]
本文字数: 500, 阅读完需: 2 分钟
导读
亚马逊云科技分析产品营销的Natasha Mahesh探讨了组织如何利用数据湖和专用数据存储来构建现代数据策略。她阐述了现代数据策略能够以低成本、开放格式存储任何规模的数据,打破数据孤岛,使用首选工具运行分析和机器学习,并通过适当的安全性和治理管理数据访问。亚马逊云科技的服务,如用于数据湖的S3、用于专用数据库和分析引擎的Redshift、EMR、OpenSearch和Kinesis,以及用于数据集成的Glue和用于统一治理的Lake Formation,可助力组织实施现代数据策略,并通过数据推动数字化转型。
演讲精华
以下是小编为您整理的本次演讲的精华,共200字,阅读时间大约是1分钟。
在当今时代,数据正成为推动企业长期可持续发展和创新的关键驱动力。有识之士依赖数据来做出明智的决策,洞悉未来趋势,并采取有意义的行动。云计算的兴起降低了大规模存储和计算的成本,为企业的再次创新铺平了道路。随着处理和分析大量数据变得更加简单和经济,下一波创新浪潮将由数据驱动。因此,建立数据驱动型组织和数据战略对于保持当前和未来的相关性至关重要。
现代数据组织将数据视为组织资产,而非个别部门的私有财产。它们建立系统来收集、存储、组织和处理有价值的数据,并以安全的方式提供给最需要的人员和应用程序。它们还利用机器学习等技术从数据中发掘新的价值,如提高运营效率、优化流程、开发新产品和收入来源,以及构建更佳的客户体验。
然而,要实现这一目标,客户需要克服几个挑战。首先是海量数据带来的挑战。研究显示,未来三年将产生的数据量超过过去30年的总和。旧的本地工具和数据存储将无法处理这种规模。其次,组织需要访问和分析各种类型的数据,如日志文件、点击流数据、语音、视频等,这些数据来自不同来源并存储在不同的数据库中。为获得洞见,组织需要打破这些数据孤岛。第三个挑战是机器学习。虽然机器学习可以成为推动创新的颠覆性技术,但如今许多组织仍在努力取得有意义的进展,因为它们缺乏合适的机器学习技能、组织惯性,以及训练所需的足够数量和质量的数据。事实上,已经拥有人工智能经验的组织在过去两年中,只有53%的人工智能概念验证项目进入了生产阶段,这表明许多公司仍在努力克服缺乏机器学习技能的困难,很难将概念验证转化为最终客户可使用的产品。第四个挑战是,随着数据隐私、安全和合规性法规日益重要,组织需要能够仔细定义、监控和管理谁有权访问特定数据。最后,除了这些挑战,去年和今年的疫情给许多客户带来了沉重打击和干扰,在这种艰难的商业环境中,客户告知,要生存下去,你需要降低成本、节省时间、大规模执行并做出更快更好的决策。而要蓬勃发展,则需要一种现代数据战略,能够随着未来的发展而成长。组织已经意识到这一点,疫情更是将其推到了前沿。你希望建立一个现代化的数据基础设施,发挥数据的作用,并创造新的体验,这样你就能在未来保持相关性,并在情况恢复正常后继续前进。
迪士尼公司就是一个很好的例子,它一直依赖亚马逊云科技来支持Disney+的爆炸式增长,该服务在2019年推出仅8个月后就实现了5年内达到1亿订户的目标。这是迪士尼团队努力工作的证明,也展示了它们如何利用亚马逊云科技服务助力实现这一目标。Disney+使用亚马逊云科技的机器学习、数据库存储、内容交付、无服务器和分析服务。例如,Disney+使用Amazon Kinesis和Amazon DynamoDB每天摄取内容元数据和数十亿条客户行为数据,使观众能够将内容添加到观看列表、在一个设备上开始观看并在另一个设备上继续观看,或者获得观看下一部作品的推荐。迪士尼还使用Amazon Timestream来监控其流媒体平台的效率,确保用户可以获得最高质量的视频内容。它们能够在启动后的24小时内处理1000万新的Disney+注册,之后又在推出服务后的前三天内处理了30亿次对Disney+内容的请求。
迪士尼是一个传统组织适应并以全新方式服务客户的典型案例。为此,它利用了组织构建现代数据策略时所遵循的一些趋势。
随着组织将数据迁移到云端,它们正在重新思考构建应用程序的方式。早期的云采用者争相为用户构建新的体验。这些构建者面临着与前几代完全不同的一系列需求。它们一直在努力理解数以百万计的用户在线购物、选择观看的电影、叫车或自拍时的规模和性能需求,以及低延迟的要求。
因此,开发人员正在使用微服务架构构建应用程序,允许它们将大型应用程序分解为更小的服务,并为特定工作选择合适的数据库和工具。例如,你可以在应用程序中使用Amazon OpenSearch进行搜索功能、使用Amazon Aurora等关系数据库存储订单或销售数据、使用专为高性能和任意规模设计的键值数据库Amazon DynamoDB存储客户评论、使用Amazon Neptune等图形数据库存储数据关系并发现连接,因为它可以存储数据之间的关系。每个模块都使用为特定工作量优化的专用数据库。
然而,这些现有的数据方法并不总是奏效。传统上,分析是通过关系数据仓库运行的。它从多个源系统收集数据并生成操作报告。但这些系统并非为处理日志文件、点击流数据或来自IoT设备的机器生成数据等指数级增长的数据而构建。相反,客户正在转向数据湖,以统一的方式存储和分析结构化和非结构化数据,并执行不同类型的分析,包括机器学习。
因此,你需要一种现代的数据策略来处理所有这些数据。现代数据策略为你提供了数据湖和专用数据存储的优势。它使你能够以低成本、开放标准的数据格式存储任何量的数据。它让你打破数据孤岛,使你的团队能够使用首选的工具或技术运行分析和机器学习,并通过适当的安全性和数据治理控制来管理谁可以访问数据。
那么,现代数据策略是什么样的呢?它真正归结为以下几点:第一是任意规模的数据。第二是为所有应用程序和分析提供最佳性价比。亚马逊云科技实际上拥有最广泛、最深入的一套专为各种工作负载优化的专用数据服务,可提供一流的功能。第三是能够访问数据并实施安全性和治理,亚马逊云科技会自动发现、标记、编目数据,并在数据湖、数据仓库和专用数据存储之间保持数据同步。最后,现代数据策略的最后一个要素是利用人工智能和机器学习来解决业务挑战。因此,无论你是想增强客户体验、提高生产力、优化流程,还是加速或扩大创新,你都可以访问亚马逊云科技提供的最完整的机器学习和人工智能服务来满足需求。
对于任意规模的数据存储,一切都始于S3。S3为你提供了无与伦比的可用性、可扩展性、持久性、治理能力、安全性和经济高效的性能。对于那些为性能和价格优化的专用数据存储,我们提供了数据库和分析引擎。
在数据库领域,我们拥有关系型、键值型、文档型、内存型、图形型、时序型、宽列型和账本型数据库。在分析方面,亚马逊云科技提供了针对独特用例优化的服务,包括数据仓库、大数据处理、交互式分析、实时分析、运营分析和可视化。因此,亚马逊云科技确实为任何行业和用例提供了所有这些服务,包括人工智能和机器学习服务。
在治理方面,客户可以定义和管理安全性、治理和审计政策,以满足特定行业和地区的法规要求。在人工智能和机器学习方面,亚马逊云科技提供了用于聚合和准备数据的服务,以及为特定行业用例构建的解决方案。因此,客户可以使用Amazon SageMaker(一种全面管理的服务,在一个集成环境中提供了机器学习开发生命周期每个步骤所需的工具)快速构建、训练和部署机器学习模型。
正如我们刚才讨论的,许多公司正在将来自各种数据库的所有数据聚合到一个数据湖中,以对这些数据执行分析和机器学习。这意味着客户的数据正在大量流动。这种流动可能是内向外、外向内或在周边发生,因为客户的数据具有引力。
让我们从内向外开始讨论。这是一个组织内部的情况。除了使用数据湖之外,客户还使用了一系列专用数据存储,以获得最佳性能、规模和成本优势来满足特定用例的需求。数据从内向外移动的方式是,客户实际上将数据从数据湖移动到不同的专用数据存储中。一个例子是,如果客户有来自网络应用程序的点击流数据被收集并导入到数据湖中,客户可以将部分数据移动到数据仓库中进行日常报告。之后,客户还可以将数据以相反的方式移动,即从专用数据存储外向内移动到数据湖中。一个很好的例子是,客户可以从数据仓库中复制某个地区产品销售的查询结果到数据湖中,以便针对更大的数据集运行产品推荐算法并使用机器学习。
最后,客户的数据在周边移动。这是指客户的数据从一个专用数据存储移动到另一个专用数据存储。一个很好的例子是,当客户将存储在数据库中的产品目录复制到搜索服务中时,可以更轻松地浏览产品目录,并将搜索查询从数据库中卸载,从而获得更好的性能和更低的延迟,为最终客户提供更好的体验。
很明显,下一波数字化转型将来自数据。亚马逊云科技可以通过三种方式为客户提供帮助:
- 亚马逊云科技可以通过与最可扩展、最值得信赖和最安全的云提供商合作,帮助客户现代化数据基础设施。运行传统的本地数据存储或者甚至在云中自我管理的组织仍然需要处理数据库供应、补丁程序、配置或备份等管理任务。因此,当客户现代化数据基础设施时,亚马逊云科技会为客户处理这些工作。这样客户就可以充分受益于亚马逊云科技无与伦比的经验、可靠性、安全性和性能,并依赖亚马逊云科技来构建最重要的应用程序。
- 亚马逊云科技可以提供帮助的第二种方式是统一一切。这就是客户发挥数据作用并利用数据湖和专用数据存储的优势来快速做出决策的方式。客户将需要这些新的数据存储来满足不断变化的业务需求,并随着业务的增长而扩展。客户还希望能够将数据库、数据湖、数据仓库与各种专用数据存储连接到一个安全、治理完善的统一系统中。亚马逊云科技通过数据湖产品和各种专用数据存储为客户提供了这种能力。
- 第三种方式是创新。这是客户真正利用机器学习和人工智能构建新体验并重新设计旧流程的地方。机器学习是我们这一代最有影响力的技术之一。它可以帮助客户创造全新的收入机会、做出更好更快的决策、提高运营效率并为客户提供更好的体验。在这方面,亚马逊云科技会根据客户的经验水平为构建者提供最广泛、最完整的机器学习和人工智能服务。
今天,我们只关注亚马逊云科技如何帮助客户利用数据湖和专用数据存储发挥数据作用这一方面。让我们从一个客户案例开始。Equinox健身公司拥有多个健康和健身品牌,包括SoulCycle。他们从Teradata(非常昂贵且无法为他们扩展)转移到Redshift、Redshift Spectrum、EMR和Athena。他们使用S3作为数据湖,这样做节省了大量资金。例如,他们每月的Redshift费用只是Teradata年度维护费用的20%。举例来说,如果客户为Teradata数据仓库支付100万美元的前期费用,那么这些供应商每年会向客户收取20%的软件维护和升级费用。而当客户迁移到Redshift时,客户实际上每年的节省超过了之前支付的维护费用。Redshift的成本确实低于其他任何地方的年度维护费用。
另一个例子是ENG,这是一家总部位于法国的全球能源公司。它拥有25个业务单位,在全球拥有16万名员工。ENG为企业和地方政府提供综合解决方案,支持他们实现零碳转型。ENG曾经在将所有数据集中到一个地方方面存在困难。2018年,ENG决定通过在亚马逊云科技上构建他们所谓的”通用数据中心”数据湖来加速数字化转型,成为一家数据驱动型公司。这个数据湖将所有业务单位的数据聚合到一个地方,允许他们在统一平台和高度安全的环境中摄取、存储、共享和使用数据集。因此,ENG能够跨351个项目收集95TB的数据。他们自动化了能源预测,最大化了风能发电。ENG是那些能够利用Redshift、Glue、Kinesis、Athena、Amazon SageMaker和S3等不同亚马逊云科技服务为客户服务的组织之一。他们之所以能够做到这一点,是因为他们采用了我们所谓的”湖仓”方法或现代数据策略,它将数据湖、数据仓库和所有专用数据存储连接成一个统一的整体,而对于亚马逊云科技来说,一切都始于S3,客户可以在那里构建数据湖。
除了数据湖之外,客户还在结合使用各种专用数据库和分析服务,包括EMR、Amazon OpenSearch和Redshift,以确保他们为每项工作使用合适的工具,并以最低的成本获得所需的性能和规模。这些客户还能够统一数据访问,他们正在使用Amazon Glue(亚马逊云科技的无服务器数据集成服务)。最后,他们还使用Amazon SageMaker在数据之上进行机器学习,以实现创新。
让我们来探讨现代数据策略或数据湖仓架构的第一个支柱:任意规模的数据存储。这些数据存储在可扩展的数据湖中。通过亚马逊云科技,客户可以将来自各种数据库的任何量的数据移动并存储到Amazon S3数据湖中,使用基于开放标准的数据格式,避免被锁定在任何特定的分析方法中。S3为客户提供了无与伦比的可用性、可扩展性、可靠性、安全性和治理功能,以及卓越的性价比。S3从一开始就被设计为提供99.999999999%(11个9)的持久性,为客户的数据湖提供了最佳的安全性、合规性,凭借这些功能,客户能够以更低的成本获得最快的性能。通过将来自不同地方和不同来源的数据带入数据湖,客户将获得三个好处:第一,避免被锁定在任何特定的数据准备格式或分析方法中,任何分析和机器学习服务都可以在这些数据上运行;第二,消除了为获取数据价值而移动、转换和重新格式化数据的需求。
要构建数据湖,客户可以使用Amazon Lake Formation。Amazon Lake Formation可以帮助客户在云中仅用几天而不是几个月的时间就构建和保护数据湖。使用Amazon Lake Formation,客户可以更快地移动、存储、编目和清理数据。客户只需将Amazon Lake Formation指向数据源,它就会抓取这些源并将数据注册到客户的Amazon S3数据湖中。对于分析和机器学习,Amazon Lake Formation为客户简化了安全管理。它为客户的敏感数据提供了安全访问,客户的用户可以访问一个集中的数据目录,该目录描述了可用的数据集和适当的数据使用情况,然后他们可以利用这些数据集并选择分析和机器学习服务。最后,Amazon Lake Formation使查找和访问数据变得更加容易。它帮助客户构建一个描述不同数据集的数据目录,为分析师和数据科学家提供了一个集中的数据目录,让他们更容易找到和访问所需的数据。正是由于这些功能,比任何其他地方都有更多的数据湖运行在亚马逊云科技上。像Vanguard、宝马、通用电气医疗、Zillow、Slack等公司都在使用亚马逊云科技来构建坚实的数据基础,亚马逊云科技多年来一直在帮助客户利用诸如S3之类的服务构建数据湖。
现代数据策略的第二个支柱是,亚马逊云科技的服务是为性能和成本优化而专门构建的。亚马逊云科技提供了最广泛、最深入的一套数据服务,针对各种工作负载进行了优化,可为客户提供一流的功能。通过亚马逊云科技,客户只需为每项工作选择合适的工具,这样就不必在功能、规模、性能或成本方面做出妥协。亚马逊云科技的客户正在利用这些不同的专用分析服务,在S3数据湖之上解决各种数据和大数据用例,以一种针对特定用例优化的方式存储和处理数据。
例如,如果客户想直接在S3数据湖上对数据进行临时查询,可以使用Athena并使用标准SQL。如果客户想使用流行的分布式框架(如Spark、Hadoop或Presto)跨动态可扩展集群处理大量非结构化数据,亚马逊云科技有一项名为EMR的服务。EMR也直接针对存储在客户数据湖中的数据运行。因此,客户不需要移动或转换数据,只需访问数据所在的位置即可。如果客户想快速搜索或分析大量日志数据,可以使用Amazon OpenSearch(前身为Amazon Elasticsearch Service)。最后,如果客户想实时处理流数据,亚马逊云科技有Amazon Kinesis和MSK。如果客户有结构化数据或者想要超快的查询结果,客户可以使用Redshift这种为云而打造的数据仓库,它彻底改变了数据仓库的经济模式。
通过这些不同的专用数据服务,让我们更详细地了解每一项服务。首先是Redshift。Redshift是唯一一种允许客户在任意规模下对数据运行查询的云数据仓库,它还支持查询操作数据存储,如Amazon Aurora。它继续成为云中最广泛使用的数据仓库,拥有数以万计的客户。像强生公司、Redfin和华纳兄弟这样的客户都在使用它。正如之前提到的,Redshift提供了比任何其他云数据仓库高出三倍的性价比。而且,随着客户的数据从GB级增长到EB级,性价比优势会进一步提高。Redshift之所以能做到这一点,是因为它的架构经过重新设计,可利用亚马逊云科技的设计、硬件和机器学习来提供任意规模下的最佳性价比。
为提供最佳性价比,Redshift利用亚马逊云科技设计的硬件,如Nitro系统和EC2,来加速常见的数据仓库功能,如数据压缩和加密。
亚马逊云科技还推出了一项名为Aqua的新功能,这是一种分布式硬件加速缓存,可使Redshift查询比任何其他云企业数据仓库快10倍。Redshift利用可用的最高网络带宽在本地数据仓库存储和S3之间移动数据,为客户最大和最苛刻的工作负载提供最快的查询响应时间。
它还使用先进的机器学习技术来分析查询、图形优化算法来自动组织和存储数据,从而获得最快的查询结果。为保持低成本,Redshift会根据数据访问频率在本地数据仓库存储和S3之间移动数据。
因此,Redshift真正与客户的数据湖和专用数据存储相集成,并与其他机器学习工具相集成,以便客户可以在一个地方分析数据。
现在让我们讨论EMR。EMR使用最新的开源大数据框架(如Spark、Hive、Presto、HBase、Flink和Hudi)简化了大数据处理。与Athena一样,EMR直接针对存储在客户S3数据湖中的数据运行,因此客户无需移动任何数据即可从中获得洞见。
客户可以轻松创建集群并供应一个或数以万计的计算实例来处理任意规模的数据。EMR会根据利用率自动扩大或缩小集群大小,因此客户只需为所使用的资源付费。EMR还将计算和存储分离开来,让客户能够独立扩展每一部分。对于存储,客户可以利用Amazon S3中的分层存储;对于计算,客户可以利用EC2 Spot实例节省高达80%的使用成本。
亚马逊云科技在2009年推出了EMR的第一个版本,已有10多年的历史,亚马逊云科技不断在性能等领域进行创新,以确保EMR是运行Spark工作负载以及Presto和Hive等其他框架工作负载的最佳选择。
现在让我们讨论Amazon OpenSearch。Amazon OpenSearch(前称Amazon Elasticsearch Service)能够轻松收集、分析和可视化来自网站、移动设备、服务器、传感器等的非结构化和半结构化机器生成日志数据。
Autodesk便是利用OpenSearch的绝佳范例。Autodesk目前每天捕获2TB的应用程序活动日志数据,并预计未来几年该数字将增长至每天10TB。他们使用OpenSearch实时收集、索引和分析这些日志,以更好地识别异常趋势和模式,从而更快地解决错误并提高应用程序的平均恢复时间。
Amazon OpenSearch Service提供了开源OpenSearch API。它是一项全面管理的服务,因此用户可在几分钟内部署生产就绪的OpenSearch Elasticsearch集群的不同版本,并通过单个API或几次点击扩大或缩小集群规模。最后,Amazon OpenSearch Service使用机器学习来实时检测异常,并自动优化集群和个性化搜索结果,而不仅限于日志文件。
我们还拥有一项名为Kinesis的服务,可以处理来自视频等实时数据流的数据。我们提供Kinesis Data Streams(一种可扩展且持久的实时数据流服务)、Kinesis Data Firehose(将流数据可靠加载到数据湖和不同数据存储的最简单方式)以及Kinesis Data Analytics(分析流数据、获取可操作洞见并实时响应业务和客户需求的最简单方式)。
使用Kinesis Data Analytics,用户可以使用开源框架和引擎Apache Flink构建复杂的应用程序来处理数据流。最后,我们有Kinesis Video Streams,可以轻松地将视频从连接的设备流式传输到亚马逊云科技进行分析、机器学习、播放和任何类型的处理。通过Video Streams,用户可以持久存储、加密、索引和通过简单的API访问数据。
我们还拥有第二个流服务,即MSK(Managed Streaming for Apache Kafka)。通过MSK,用户可以从流数据中获得可操作的洞见,并使用无服务器Apache Flink。该服务与Kafka兼容,是全面管理、高度可用和安全的,可满足所有数据需求。
现代数据策略的另一个支柱是,亚马逊云科技允许用户无论数据位于何处都可以轻松访问和保持数据同步。无论数据位于数据湖还是其他数据存储,用户都可以无缝访问数据。
为此,我们推出了Glue服务。Glue是一项无服务器数据集成服务,可以轻松准备数据以供分析、机器学习和应用程序开发使用。Glue提供了进行数据集成所需的所有功能,因此用户可以在几分钟而不是几个月的时间内从数据中获得洞见并充分利用数据。
Amazon Glue为用户提供了可视化和基于代码的界面,使数据集成变得简单。用户可以轻松使用Amazon Glue数据目录查找或访问数据。数据工程师和ETL开发人员可以通过几次点击在Amazon Web Services Glue Studio中轻松创建、运行和监控ETL工作流。然后,数据分析师和数据科学家可以使用Amazon Glue DataBrew在不编写任何代码的情况下,通过可视化方式丰富、清理和规范化数据。
随着越来越多的组织将数据存储在S3数据湖和专用数据存储中,他们通常需要在数据湖、数据仓库和不同数据服务之间来回移动数据。因此,Amazon Glue允许用户构建复杂的数据集成管道,收集、组合数据并保持数据的最新状态。客户非常喜欢Amazon Glue的可扩展性和灵活性。它提供了ETL、可视化数据准备、数据复制、在数据湖和不同数据仓库之间移动数据,以及联合查询等服务和功能。我们有Glue等服务帮助用户做到这一点,但我们还有其他服务,如Redshift Spectrum或Redshift Data Shares,用于实现相同目的。
湖仓架构或现代数据策略的第四个支柱是统一的治理。用户可以集中定义和管理安全性,还可以添加审计政策来满足特定行业或地区的法规要求。亚马逊云科技允许用户使用Amazon Lake Formation来实现这一点,它赋予了开发人员、业务分析师、数据科学家权限,打破数据孤岛,以安全和受控的方式分析数据。
Amazon Lake Formation为用户提供了一种简单的方式,在一个地方集中定义和管理安全性、治理和审计政策,从而让组织内使用数据的所有人更轻松。这有助于用户的组织根据合规性和法规要求,为正确的用户在正确的时间提供对数据的细粒度访问权限。
现代数据策略的最后一部分是我们如何将机器学习添加到不同的服务中。大多数使用我们服务的用户无需具备先前的机器学习经验。无论用户是想增强客户体验、提高团队生产力,还是改变现有流程或加速创新,我们都提供了一套机器学习和人工智能服务来满足他们的需求。
亚马逊云科技允许用户使用Amazon SageMaker快速训练、部署和构建机器学习模型。我们能够在一个集成环境中,在机器学习开发生命周期的任何阶段为用户提供所有机器学习需求的支持。正如我之前所说,我们正在将机器学习更接近数据。
我们将Amazon SageMaker和其他机器学习服务直接集成到数据库中,供开发人员、数据分析师和业务分析师日常使用。我们的客户使用关系型、非关系型数据库和数据仓库等不同类型的数据存储来满足不同的使用场景。我们让他们能够轻松获得机器学习的好处,而无需拥有任何机器学习经验。
我们为数据库构建了机器学习产品,包括与SageMaker集成的Aurora ML、Neptune ML、Redshift ML、Athena ML和Amazon QuickSight ML。我们真正将机器学习带到了我们的不同数据服务中。
例如,使用Redshift ML,我们的客户能够处理EB级数据来支持他们的分析工作负载,并将其与机器学习相结合,而大多数人无需具备任何先前的机器学习经验。用户只需使用标准SQL查询,就可以获得机器学习带来的优势。
红移ML就是一个很好的例子,即使没有任何机器学习经验,也可以轻松使用。只需使用SQL(这是大多数数据分析师、业务分析师和数据科学家习惯使用的语言)即可训练和部署各种机器学习模型。之后,可以使用SQL命令从数据仓库中的数据快速获得预测结果,全部在Redshift环境中完成。
总之,发挥数据的作用将推动下一波数字化转型,这一点是非常明确的。因此,现代化数据基础设施、统一数据湖和专用数据源的优势,并在此基础上添加机器学习以构建新体验和重新设计旧流程,这一点至关重要。
亚马逊云科技将在这一旅程中提供支持,无论身处旅程的哪个阶段。虽然亚马逊云科技为您提供了现代化、统一和创新这三种方式,但您可以从任何一个入手,亚马逊云科技都能够提供支持。
感谢您今天抽时间与我们共度。如果有任何疑问,可直接通过电子邮件联系。您也可以访问aws.amazon.com/data,查看亚马逊云科技提供的所有资源,了解如何将所有数据需求集中在一个地方。再次感谢。
总结
在数字时代,掌握数据对于企业蓬勃发展和保持相关性至关重要。亚马逊云科技分析产品营销专家Natasha Mahesh强调,构建现代数据策略的重要性在于将数据湖的可扩展性与专用数据存储的性能相结合。这种方法使组织能够存储和分析大量结构化和非结构化数据,打破数据孤岛,并利用机器学习推动创新和增强客户体验。
亚马逊云科技提供了一套全面的服务来支持这种现代数据策略。Amazon S3提供高度可扩展和耐用的数据湖,而Amazon Redshift、EMR、OpenSearch和Kinesis等服务则满足特定的分析和处理需求。亚马逊云科技Glue简化了跨不同数据存储的数据集成和同步,而亚马逊云科技Lake Formation则实现了统一的治理和安全控制。此外,Amazon SageMaker和其他ML服务使组织能够无缝构建、训练和部署机器学习模型,从而发现新的见解并优化流程。
通过采用亚马逊云科技的现代数据策略,组织可以克服数据指数级增长、分散数据源以及需要进阶分析和机器学习能力带来的挑战。这种方法使它们能够做出明智决策、提高运营效率、开发新的收入来源,并提供出色的客户体验,从而推动数字化转型并实现长期成功。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。