亚马逊云科技-创新白爽GenAI
关键字: [innovate2024, Fupuliú, 企业数据资产激活, Ai生产力最后一公里, 知识库问答系统, Ai数字员工, 人机协作Copilot]
本文字数: 1600, 阅读完需: 8 分钟
导读
在亚马逊云科技创新2024大会上,扶植流创始人兼CEO白双分享了如何通过构建AI生产力系统来激活企业数据资产,解锁AI生产力的最后一公里。他介绍了该系统包含三个子系统:知识库问答系统、AI数字员工(Agent)和人机协作Copilot系统。这三个子系统可独立使用,也可相互融合,满足企业不同阶段的需求。他还分享了该系统在智能制造、快消品等行业的应用案例,以及该系统如何基于人类智能模式的仿生设计,通过记忆、感知、决策和行动四个模块实现负责任的AI能力。该系统部署在亚马逊云上,提供SaaS和私有化部署两种方式。
演讲精华
以下是小编为您整理的本次演讲的精华,共1300字,阅读时间大约是6分钟。
在亚马逊云科技的创新大会上,扶植流公司创始人兼CEO白双先生就如何更好地激活企业数据资产,解锁AI生产力的最后一公里做了分享。他的分享内容从四个维度展开,但重点围绕在与客户实践中沉淀出的最佳AI落地方式。
白双先生首先聚焦在最后一公里的讨论上,拉长时间线回顾了从2022年底ChatGPT出现到现在的AI发展周期。该周期可分为三个阶段:第一阶段是2022年至2023年6月前的AI单点工具爆发时期,当时出现了大量基于大模型的写作、翻译等单点工具,但企业很少采用,原因在于数据安全问题以及企业需求多样化,一个大型企业可能需要采购五六十个工具,这是不太现实的。第二阶段是面向研发人员的开源社区出现,提供AI研发工具链,但从工具到面向终端用户的应用还有一段距离,需要产品化能力。第三阶段则是出现了面向终端用户的产品化解决方案,主要包括AI知识库问答系统、AI数字员工系统和人机协作系统。
白双先生指出,对企业来说,单独采购每一种AI工具既无法实现数据统一,也会增加采购成本,因此难以真正释放AI生产力。为解决这一挑战,扶植流公司构建了一套AI生产力系统,将知识库问答、AI数字员工(Agent)和人机协作(Copilot)三种能力融合在一个系统中,它们可以独立存在,也可以相互融合。
接下来,白双先生一一介绍了这三个子系统的功能以及落地场景。第一个是知识库问答系统,可实现全生命周期知识管理。在一个常见的应用场景中,作为营销部门的员工需要写一篇PR文章,可以基于知识库内容生成描述公司如何打造负责任AI的文字,系统会追踪并利用之前发布的一篇相关文章。该系统还支持跨模态信息检索,可以从几百页的PDF等文件中精准提取文字、图片和表格内容并回答问题。白双先生举例说明,某智能制造客户原先需要人工翻阅300多页的实用手册对经销商进行培训,现在可以通过问答系统step by step地回答问题,并从PDF中精确检索并呈现相关内容和示例图片,应用场景非常丰富。
第二个子系统是AI数字员工,主要用到思维链技术,在回答过程中具有一定的逻辑关联。它可以定向生成分析报告,如对两款手机产品进行竞品分析,包括SWOT分析、用户评价、性能对比等,数据源可以来自小米和华为官网的两个URL链接。在数据分析场景中,AI可以根据客户提供的一家咖啡连锁店的销售数据,通过可视化的表格和图表呈现每家店铺的大概销售额情况、检测异常等,支持多轮对话和个性化分析需求。此外,AI数字员工还可以定向查询,如根据变频器型号查询故障原因,通过目标性引导来挖掘所需信息并给出回答,而非简单问答。该客户一共部署了6个此类查询机器人,如查询库存、网店等,但使用的都是同一技术原理。
第三个子系统是人机协作系统Copilot,可以将人工与AI的能力结合,通过工作流模块搭建的方式,在端到端完成事情的过程中串联可人机协作的编辑器。白双先生演示了一个视频多模态翻译的客户案例:系统不仅对语音进行提取并基于大模型语料库翻译,还运用了口型对齐、声音克隆等技术,使翻译结果看起来更自然,过程中客户需要对AI结果进行校对。另一个案例是虚拟数字人解说视频的生成,可以提前定制数字人像,通过录入文字生成视频,包括数字人与解说的融合,最终输出带字幕的视频,字幕也可人工校对。这些场景往往需要代表品牌形象,因此精细化处理很重要,可通过Copilot类人机协作工作流实现。
接下来,白双先生分享了两个客户案例。第一个是智能制造企业,在构建AI生产力时用到了扶植流的知识库问答和数字员工两个子系统,包括培训、售后管理和数据分析等,主要需求是高效利用现有企业数据,对经销商实现高效培训,提升售后和客服体验,客户还在挖掘更多内部场景,通过工作流构建实现更丰富场景。第二个是快消品客户,也面临企业私有数据利用率低的问题,因此使用了知识库产品,在构建AI代理方面则用到了智能导购场景面向终端用户,内部的营销部门和法务部门也挖掘了丰富的人机协作场景,如法务合同起草等需要人工介入的流程,包括一些合规的相关流程,对外的营销物料也需要人工介入。
最后,白双先生从仿生学的第一性原理角度解释了整套系统的设计逻辑。将人类智能比作包含记忆、感知、决策和行动四个模块的”智能体”,扶植流的系统则模拟了这一架构,将大语言模型、数据分析工具等技术融入相应模块,作为系统的技术底座,并通过打造负责任AI的能力来强化底座,如重排序、幻觉控制、代码解释器等。在此基础上,系统提供了一个智能体搭建层,开放给企业自行搭建,并提供AI Agent智能体设计师人才库的服务,帮助企业将业务语言转化为智能体工作流语言,结合企业知识和knowhow构建思维链,由内部的Agent Designer构建面向不同岗位的个性化应用场景。
总的来说,扶植流公司致力于构建一套融合知识库、AI代理和人机协作的AI生产力系统,帮助企业激活数据资产,在多种场景下提高AI落地效率,从而解锁AI生产力的最后一公里。该系统部署在亚马逊云科技上,可通过Amazon Marketplace订阅SaaS版本,按席位收费,旗舰版包含所有三个子系统。也支持私有化部署,并与主流开源及闭源大模型相兼容,在大模型调用上推荐使用亚马逊云科技的Claude 3.5版本模型,性能表现不错。
下面是一些演讲现场的精彩瞬间:
演讲者分享了如何激活企业数据资产,解锁AI生产力最后一公里的四个维度,并分享了在与客户实践中总结出的最佳AI落地方式。
在2022年至2023年6月期间,我们将看到大量基于大型语言模型的单点工具出现,如写作工具和翻译工具,但企业采用这些工具存在数据安全和多样化需求的挑战。
通过知识库问答系统,可以基于公司内部知识库的内容,生成个性化的输出,满足不同部门的需求场景。
AI 能够从数百页的 PDF 文件中精准提取信息,并通过问答形式逻辑地呈现内容,为培训和知识传播提供了高效便捷的解决方案。
AI可以定向生成结构化的竞品分析报告,大幅提高工作效率
我们将推出”AI Agent智能体设计师人才库”服务,帮助企业培养既懂业务又懂技术的人才,将企业知识转化为智能体工作流程,构建个性化应用场景。
在大模型调用方面,Wuyu支持国内外主流的闭源API和开源模型部署,并推荐在Bad Rock上使用性能优异的Cloud 33.5。
总结
亚马逊云科技创新大会上,扶植流CEO白双分享了如何通过构建AI生产力系统来激活企业数据资产,解锁AI生产力的最后一公里。他阐述了三个关键子系统:知识库问答系统、AI数字员工(Agent)和人机协作Copilot系统。知识库问答系统可实现全生命周期知识管理、跨模态信息检索等功能。AI数字员工可定向生成分析报告、进行数据分析和查询等。Copilot系统则支持人机协作完成端到端任务,如视频翻译、数字人视频生成等。白双还分享了智能制造和快消品客户的应用案例,最后介绍了该系统的技术架构和部署方式。他呼吁企业与扶植流共同挖掘更多AI业务场景,真正释放AI生产力。
该系统在亚马逊云上部署,提供SaaS订阅和私有化部署两种方式,支持主流闭源和开源大模型。扶植流期望通过这一创新系统,帮助企业激活数据资产,释放AI生产力的最后一公里。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。